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Model adjustment at 
different levels

2

• User-driven experimentation: Use cases for paraglide

• Criteria optimization: Lighting design 

• Theoretical analysis: Sampling in volume rendering

• Discretizing a region: Lattices with rotational dilation

• Summary and conclusion



Data acquisition and 
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Turning code into data

• Computer simulation code

• Function abstraction

! Variables: input, output, and 
algorithm specific

! Deterministic code

4
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Figure 3.12 corresponds to the numerical simulation of the nonconstant velocity model.

The initial condition is a spatial perturbation of the steady state u∗
5. The cross section of

this spatial pattern at time=57 is given in Figure 3.13. The parameter values are the same

as the ones used in Figure 3.5. In the simulation, we fix the total density A = 2. As shown

in the spatial pattern, individuals form 16 groups. This number matches with the critical

wave number k16 illustrated in Figure 3.5(b).

Figure 3.6: Spatial pattern obtained through solving the constant velocity model numeri-
cally. All the parameter values agree with Figure 3.3(b). The initial condition is a random
perturbation of the steady state u∗

3. As we see from this figure, the individuals form 15
groups which agrees with the critical wave number k15 in Figure 3.3(b).
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Figure 3.7: The cross section of the spatial pattern given in Figure 3.6 at time = 190. The
horizental axis represents space and the vertical one represents the density u.
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of Hopf bifurcation at qh1
for the steady state u∗

5 is illustrated in Figure 3.5.
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Figure 3.14: Bifurcation diagrams for the cases of (a) constant and (b) density dependent
velocities. The filled (unfilled) circles represent the stable (unstable) spatially homogeneous
steady states. In both cases, qal is the bifurcation parameter. At Q∗ ! 1.9, four fixed
points u∗

1, u
∗
2, u

∗
4, and u∗

5 are created through a saddle-node bifurcation. As we approach
Q∗∗ ! 3.4 from below, two of the steady states u∗

2, and u∗
4 disappear through a subcritical

pitchfork bifurcation. A Hopf bifucation has occurred at qh ! 2.2 for the steady states u∗
1,

and u∗
5 when the velocity is constant. In the case of density dependent velocity, the steady

states u∗
1, and u∗

5 undergo Hopf bifurcations at qh1
! 2. The values of the fixed parameters

in case (a) correspond to Figure 3.4(a-c), and in case (b) correspond to Figure 3.5.

(c) Sareh Nabi Abdolyousefi
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More cases

• Parameter space segmentation

• Bio-medical imaging algorithm

• Fuel cell design

• Scene lighting configuration

• Raycasting step size parameter

6
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Figure 1.4: Abstraction of data, interaction, and computational components. Lines indicate shared
data among processing steps and arrows prescribe an order of execution. On a more detailed level,
Red is required input and blue denotes information that is available after a processing step.

The overall model is represented by a function f : n → r. It is parametrized

over a multi-variate Euclidean domain, in which a point is denoted in vector notation as

x = (x1, x2, . . . , xn). A point in the multi-field range of f , can be computed as f(x) =

y = (y1, y2, . . . , yr). The combination of domain × range of f gives its data space. Occa-

sionally [WB94], the xi are referred to as independent and the yi as dependent variables.
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Paraglide design

• Setup compute node
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Paraglide design

• Setup compute node

• Choose variables
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Paraglide design

• Setup compute node

• Choose variables

• Choose region

• Sample and compute

• Compute features

• View, predict, diagnose
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Paraglide summary

• Longitudinal study showed use of parameter 
space partitioning

• Requirements informed follow-up projects

• Alternative user interaction

! Dimensionally reduced slider embedding

! Mixing board

• Video demo

9
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• User-driven experimentation: Use cases for paraglide

• Criteria optimization: Lighting design 

• Theoretical analysis: Sampling in volume rendering

• Discretizing a region: Lattices with rotational dilation

• Summary and conclusion
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Roadmap

From light to colour
Efficient light model
Designing spectra for lights and materials
Evaluation
Applications

11Bergner, Drew, Möller - Generating Light and Reflectance Spectra - ACM Trans. on Graphics 2009
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Use for Visualization
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Light 1

Light 2
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Use for Visualization

Metamers
! Different Spectra give same 

RGB 
Constant Colours
! Metamers under changing 

light
Metameric Blacks
! Spectra give RGB triple = 0

Effective choice of light & 
material palette needed!

13

Light 1

Light 2
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Illumination Dependent Colour Picker
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Quality Criteria

Colour

– Fit the desired colour or metamer

Smoothness

– Regularize solution and reduce extrema

Minimal error in linear model

– Minimal colour difference when illumination bounce is 

computed in linear subspace

Positivity

– Produce physically plausible spectra

17
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Instead of equation system                       for spectrum

Solve normal equation                             

– Colour:!

– Smoothness:

Weight the criteria and combine as stacked matrix

– Global minimum error solution via pseudo-inverse of 

– Positivity through quadratic programming
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Roadmap

From light to colour
Efficient light model
Designing spectra for lights and materials
Evaluation
Applications
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0.1434 0.1117 0.04218 0 0 0 0 0.07356 0.3759 0.5742 0.5092 0.2921 0.09508 0.003234 0 0];

Figure 5.2: The reflectance spectra on the left of each row are designed to be metameric under
daylight (colours column 1) and to gradually split off into 3 and 5 distinguishable colours under two
artificial ‘split light’ sources. The resulting reflectance spectra are given below the figure.
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Image based re-lighting
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14 · Bergner, Drew, Möller

in an image pixel by the new light’s basis coefficients. For further details on this method along with a user-friendly
widget to control different lighting see [Bergner et al. 2005].

a) b) c)

Fig. 6. Engine block rendered using metamers and color constancy. The three images in the figure are re-illuminated without repeating the
raycasting.

In Fig. 6(a) an engine block and inner parts are metameric; ’smoke’ (reconstruction noise) is present, but is colored
black via the metameric black mechanism. Thus, it is invisible. Fig. 6(b) has the same reflectances, but under a
different light designed such that inner parts are now distinguishable from the engine block, which itself has kept a
constant color from the previous light. The ’smoke’ appears white now. Under another light, in Fig. 6(c), the smoke
changes color to be red, whereas the other two parts keep their appearance as much as this is possible in the context of
having surrounding smoke be of different color.

Another example, a frog, is shown in Fig. 7. Again, the first image shows all materials as being metameric. Notably,
this color was not chosen directly, but instead arises as ‘free color’, as described in § 3 — the design process has chosen
the color, on the basis of the optimization. In Fig. 7(b), a new light is gradually mixed in such that the metamers begin
to break apart. Additionally, that new light makes the body of the frog go black so that it gradually disappears. In
Fig. 7(c), the light dominant in (a) has been switched off. As a result, the body turns dark and the inside structures
remain in a distinct color.

a) b) c)

Fig. 7. Frog rendered with four different materials at different mixtures of light spectra.

ACM Transactions on Graphics, Vol. V, No. N, June 2008.
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in an image pixel by the new light’s basis coefficients. For further details on this method along with a user-friendly
widget to control different lighting see [Bergner et al. 2005].
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Fig. 6. Engine block rendered using metamers and color constancy. The three images in the figure are re-illuminated without repeating the
raycasting.

In Fig. 6(a) an engine block and inner parts are metameric; ’smoke’ (reconstruction noise) is present, but is colored
black via the metameric black mechanism. Thus, it is invisible. Fig. 6(b) has the same reflectances, but under a
different light designed such that inner parts are now distinguishable from the engine block, which itself has kept a
constant color from the previous light. The ’smoke’ appears white now. Under another light, in Fig. 6(c), the smoke
changes color to be red, whereas the other two parts keep their appearance as much as this is possible in the context of
having surrounding smoke be of different color.

Another example, a frog, is shown in Fig. 7. Again, the first image shows all materials as being metameric. Notably,
this color was not chosen directly, but instead arises as ‘free color’, as described in § 3 — the design process has chosen
the color, on the basis of the optimization. In Fig. 7(b), a new light is gradually mixed in such that the metamers begin
to break apart. Additionally, that new light makes the body of the frog go black so that it gradually disappears. In
Fig. 7(c), the light dominant in (a) has been switched off. As a result, the body turns dark and the inside structures
remain in a distinct color.
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Fig. 7. Frog rendered with four different materials at different mixtures of light spectra.
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Fig. 1. Spectral design of two material reflectances shown on the left of their representative rows. The colors formed under two different illumination
spectra are shown in the squares in the respective columns where D65 (right column) produces a metameric appearance.

patch. Its surrounding area shows the color that the actual resulting spectra produce in combination with each other.
The design was successful if the desired and the actual colors are similar enough. The appearance of ’refl 2’ under the
high-pressure sodium lamp is dark brown instead of the desired gray, which is acceptable in this example.

3.1 Matrix Formulation

It is possible to approach the design problem by solving a linear equation system for a spectrum !x

Qrgb,31diag( !E)!x = !c, (16)

where Qrgb,31 is the spectrum to RGB conversion matrix2. The solution !x will be a reflectance producing the user-

specified color tri-stimulus !c under the given illumination spectrum !E. Further, one might ask for multiple lights !Ek

to produce colors !ck with reflectance !x. One can solve for this by vertically concatenating the illumination matrices

Qrgb,31diag( !Ek) = Q
( !Ek)
rgb,31 into a matrix M and their respective color forcing vectors !ck into a vector !y. As there

might not be a spectrum that fulfills all conditions exactly we switch from solving an equation system to a quadratic
minimization problem:

min!x||M!x − !y|| = min!x

[

!xT MT M!x − 2!yT M!x
]

, (17)

An unconstrained solution would be available via the pseudo-inverse M+ = (MT M)−1M as !x = M+!y. Alter-
natively, we use quadratic programming (QP), because it allows the inclusion of lower and upper bound constraints

for the components of !x. Note that the entire design could be carried out for a light !E instead of a reflectance !S, by

replacing !E with !S in Eq. 16. The solution !x would then contain a light !E producing color !c when illuminating the

given reflectance !S. This outlines the main idea behind the design method. We will refine it in the following by adding
more optional criteria, such as linear subspace model error minimization and smoothness via minimal second order
differences. Finally, all criteria are weighted and combined by concatenating them to form M and !y in a single QP
problem.

As shown in § 2.2.1, color computation can also be performed in the linear subspace. The 3 × m matrix that takes
an m-vector representation in basis B of Eq. 2 directly to RGB is Qrgb,m = Qrgb,31 B. The least squares problem

2The matrix may be formed as Qrgb,31 = Qrgb,xyz ·Qxyz,31, where the rows of Qxyz,31 are the 3× 31 set of color matching functions in the
CIE XYZ model [Wyszecki and Stiles 1982] and Qrgb,xyz is a hardware (monitor) dependent 3 × 3 matrix to transform XYZ to RGB.
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Visualizing P(k,l)

          Intuition                 Analysis                 Application

• Slopes of lines in P(k,l) are related to 1/f‘(x)

• Extremal slopes bounding the wedge are 1/max(f’)
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Adaptive Raycasting 
SNR

Ground-truth:

computed at a fixed

sampling distance

of 0.06125
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Summary

• Proper sampling of combined signal g(f(x)):

• Solved a fundamental problem of rendering

• Composition is a general data processing 
operation

          Intuition                 Analysis                 Applications
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Point lattices

• Definition via basis {Rk : k ∈ Zn}
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dyadic subsampling
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
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]
,K =

[
2 −1
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]
, θ = 69.3◦
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)

QR
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withAppendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills

d(λ) =
n/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

=
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Thus, if
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k=0

cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills

d(λ) = (α − λ)
(n−1)/2∏
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⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Appendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills
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If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills
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= −
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⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)
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withAppendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills

d(λ) =
n/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

=
n/2∏

k=1

(α2 − 2λα cos θk + λ2)

=
n/2∏

k=1

[
(
α4

λ2
− 2

α3

λ
cos θk + α2)

λ2

α2

]

= d

(
α2

λ

) (
λ

α

)n

(9)

Thus, if

d(λ) =
n∑

k=0

ckλk

=
n∑

k=0

ck

(
α2

λ

)k (
λ

α

)n

=
n∑

k=0

cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills

d(λ) = (α − λ)
(n−1)/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

⇒ d(λ) = −
(

λ

α

)n

d

(
α2

λ

) (12)

Thus, if

d(λ) =
n∑

k=0

ckλk

= −
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k=0

ck

(
α2

λ

)k (
λ

α

)n

= −
n∑

k=0

cn−kαn−2kλk

⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Appendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.
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If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills
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By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)
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generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
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teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)

withAppendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills

d(λ) =
n/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

=
n/2∏

k=1

(α2 − 2λα cos θk + λ2)

=
n/2∏

k=1

[
(
α4

λ2
− 2

α3

λ
cos θk + α2)

λ2

α2

]

= d

(
α2

λ

) (
λ

α

)n

(9)

Thus, if

d(λ) =
n∑

k=0

ckλk

=
n∑

k=0

ck

(
α2

λ

)k (
λ

α

)n

=
n∑

k=0

cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills

d(λ) = (α − λ)
(n−1)/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

⇒ d(λ) = −
(

λ

α

)n

d

(
α2

λ

) (12)

Thus, if

d(λ) =
n∑

k=0

ckλk

= −
n∑

k=0

ck

(
α2

λ

)k (
λ

α

)n

= −
n∑

k=0

cn−kαn−2kλk

⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements
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d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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and thus agree in eigenvalues and determinant.
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Diagonalizing rotation Q
[

cos θ − sin θ
sin θ cos θ

]
=

1
2

[
1 1
j −j

] [
ejθ 0
0 e−jθ

] [
1 j
1 −j

]

Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements
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serted in the construction of R scale the otherwise unit
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2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on
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permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =
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This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements

Different eigenvalue structure for even and 
odd dimensionality

With analogue block-wise construction of Jn
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Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.
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permits a single possible polynomial with non-zero coef-
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This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
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8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements

Different eigenvalue structure for even and 
odd dimensionality

Appendix: Characteristic polynomial of a
scaled rotation matrix in Rn

The similarity relationship between K and Q in Equa-

tion 2 implies that they share the same characteristic poly-

nomial d(λ) = det(K − λI) = det(Q − λI) leading to
an agreement in eigenvalues d(λk) = 0 and determinant
d(0) ([6], p. 184). Further, since K is an integer matrix

the polynomial d(λ) ∈ Z[λ] has integer coefficients ck.

In order to find integer matrices K with the eigenvalues

of a scaled rotation matrix, it will be important to distin-

guish the two different forms of the diagonal matrix∆ in

Equation 4 and 5 for the case n = even

∆ = diag[ejθ1 e−jθ1 . . . ejθn/2 e−jθn/2 ]

and the case n = odd

∆ = diag[1 ejθ1 e−jθ1 . . . ejθ(n−1)/2 e−jθ(n−1)/2 ]

with analogue block-wise constructions for Jn.

For dimensionality n = even the characteristic polyno-
mial ofK andQ fulfills

d(λ) =
n/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

=
n/2∏

k=1

(α2 − 2λα cos θk + λ2)

=
n/2∏

k=1

[
(
α4

λ2
− 2

α3

λ
cos θk + α2)

λ2

α2

]

= d

(
α2

λ

) (
λ

α

)n

(9)

Thus, if

d(λ) =
n∑

k=0

ckλk

=
n∑

k=0

ck

(
α2

λ

)k (
λ

α

)n

=
n∑

k=0

cn−kαn−2kλk

⇔ ck = αn−2kcn−k = δ1− 2k
n cn−k.

(10)

If ck $= 0 and ck, δ ∈ Z then δ1− 2k
n ∈ Q. This is impos-

sible for 0 < 2k < n, assuming small values of δ, such
as 2, 3 or any simple product of primes. This implies that
ck = cn−k = 0 for k = 1, 2, . . . n

2 − 1. For k = n
2 the ck

can be non-zero leading to

d(λ) = λn + Cλ
n
2 + αn (11)

with the requirement that C2 < 4αn so that the complex

eigenvalues d(λk) = 0 are evenly distributed on the com-
plex circle of radius |λk| = α.
For dimensionality n = odd the polynomial fulfills

d(λ) = (α − λ)
(n−1)/2∏

k=1

(αejθk − λ)(αe−jθk − λ)

⇒ d(λ) = −
(

λ

α

)n

d

(
α2

λ

) (12)

Thus, if

d(λ) =
n∑

k=0

ckλk

= −
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k=0

ck

(
α2

λ

)k (
λ

α

)n

= −
n∑

k=0

cn−kαn−2kλk

⇔ ck = −αn−2kcn−k = −δ1− 2k
n cn−k.

(13)

By the same reasoning as for the even case, ck = 0 for all
k = 1, 2, . . . n−1

2 resulting in only one possible character-

istic polynomial

d(λ) = λn − αn. (14)

To refer to the above procedure we will invoke a function

compoly(n, α, C) that returns a companion matrix (Equa-
tion 7) with a characteristic polynomial as in Equation 11

or 14.
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tion 7) with a characteristic polynomial as in Equation 11

or 14.
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦
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Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)
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Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2

[
ejθ 0
0 e−jθ

]
J2 = J−1

2 ∆J2.

(4)

Using this observation to replace the scaled rotationmatrix

Q in Equation 3 leads to

K = R−1QR
K = αR−1J−1

n S∆S−1JnR
K = αP∆P−1

(5)

with
R = J−1

n SP−1

Q = αJ−1
n ∆Jn.

(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit

eigenvectors in the columns of P. Below, we will refer to
this construction as function formRQ(K,S) using S = I
by default.

2.1 Constructing suitable dilation matricesK

The eigenvalues of K,∆ and Q impose restrictions on

their shared characteristic polynomial d(λ) = det(K −
λI) =

∑n
k=0 ckλk as discussed in the appendix. For

the case n = even with the only non-zero integer coef-
ficients c0 = δ, c2

n/2 < 4δ, cn = 1 this leaves a finite
number of different options for cn/2. The case n = odd
permits a single possible polynomial with non-zero coef-

ficients c0 = −δ, cn = 1. For these monic polynomials
it is possible to directly construct a candidate K via the

companion matrix ([6], p. 192)

K =





0 −c0

1 0 −c1

1 0
...

. . .
. . . −cn−2

1 −cn−1




. (7)

This allows to construct a lattice fulfilling the self-similar

subsampling condition for any dimensionality n, one for
every possible characteristic polynomial.

With this starting point it is possible to construct additional

suitable dilation matrices via a similarity transform with a

unimodular matrix T

KT = TKT−1 = PT ∆P−1
T . (8)

Using a unimodular rather than any non-singularT guar-

antees thatT−1 is also unimodular following from the fact

that T−1 can be constructed from the adjugate (the trans-

posed co-factor matrix) of T. Thus, KT remains an inte-

ger matrix by this transform. Possible generators for this

unimodular group are discussed in ([5], pp. 23). Our im-

plementation, referred to as function genUnimodular(n),

uses a construction of T = LU from several random in-

teger lower and upper triangular matrices having ones on

their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements

K ∈ Zn×n
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(1) GrUVi-Lab, Simon Fraser University, Burnaby, Canada.

(2) BIG, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

(3) The Chinese University of Hong Kong, Hong Kong, China.

sbergner@cs.sfu.ca, thierry.blu@m4x.org, Dimitri.VanDeVille@epfl.ch, torsten@cs.sfu.ca

Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦

!1.5 !1 !0.5 0 0.5 1 1.5
!1.5

!1

!0.5

0

0.5

1

1.5

Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.
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2. Lattice construction
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√
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in
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Using a matrix J2 =
[

1 j
1 −j

]
it is possible to diago-

nalize a 2D rotation matrix by the following similarity

transform

[
cos θ − sin θ
sin θ cos θ

]
= J−1

2
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]
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(4)
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(5)

with
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(6)

Thus, given a matrix K that has an eigen-decomposition

corresponding to that of a uniformly scaled rotation ma-

trix, we can compute the lattice generating matrix R as

in Equation 6. The elements of the diagonal matrix S in-
serted in the construction of R scale the otherwise unit
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their diagonal.

It is not guaranteed that all possibleK for a given charac-

teristic polynomial can be generated through a similarity

transform with someT. However, formRQ(KT ) provides

numerous non-equivalent RT lattice generators. Among

them it is possible to apply further criteria to select the

“best” lattice.

An alternative to transformingK is the eigenvector scal-

ing by diagonal matrix S in Equation 6. Using non-unit
scaling allows to produce further lattices for any givenK
resulting in an n-dimensional continuous search space.

2.2 Construction Algorithm

The steps for constructing lattices with the desired

subsampling matrices are summarized in algorithm 1.

The function compoly(n, α, C) is defined in the

Algorithm 1 genLattices(n, δ)

1: Llist← {}
2: Ks← genKompans(n, δ)
3: Ts← genUnimodular(n)∪{I}
4: for all K ∈ Ks do
5: for all T ∈ Ts do
6: KT = TKT−1

7: (RT ,QT ) ← formRQ(KT )

8: Llist← Llist∪{(KT ,RT ,QT )}
9: end for

10: end for

11: return Llist

Algorithm 2 genKompans(n, δ)

1: Ks = {}
2: if n is even then
3: for all C ∈ Z : C2 < 4δ do
4: Ks← Ks ∪ compoly(n, δ

1
n , C)

5: end for

6: else {n is odd}
7: Ks← {compoly(n, δ

1
n )}

8: end if

9: return Ks

appendix. A possible implementation for the func-

tion genUnimodular(n) is described in Section 2.1 and
formRQ(K) is defined below Equation 6.
It should be noted that the list of lattices returned by

genLattices may contain several equivalent copies of the

same lattice. A Gram matrix implicitly represents angles

between basis vectors asA = RTR. Two latticesR1 and

R2, scaled to have the same determinant, are equivalent if

their Gram matrices are related via A1 = TTA2T with

a unimodular matrix T ∈ Zn×n and |detT| = 1. Deter-
mining this unimodular matrix is known to be a difficult

problem, as it for instance also occurs when relating the

adjacency matrices of two supposedly isomorphic graphs.

Hence, our current method employs a simpler necessary

test for equivalence by comparing the first few elements

K ∈ Zn×n
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Abstract:

We provide a method for constructing regular sampling

lattices in arbitrary dimensions together with an integer

dilation matrix. Subsampling using this dilation matrix

leads to a similarity-transformed version of the lattice with

a chosen density reduction. These lattices are interest-

ing candidates for multidimensional wavelet constructions

with a limited number of subbands.

1. Primer on sampling lattices and related
work

A sampling lattice is a set of points {Rk : k ∈ Zn} ⊂ Rn

that is closed under addition and inversion. The non-

singular generating matrixR ∈ Rn×n contains basis vec-

tors in its columns. Lattice points are uniquely indexed

by k ∈ Zn and the neighbourhood around each sampling

point is identical. This makes them suitable sampling pat-

terns for the reconstruction in shift-invariant spaces.

Subsampling schemes for lattices are expressed in terms

of a dilation matrixK ∈ Zn×n forming a new lattice with

generating matrix RK. The reduction rate in sampling
density corresponds to

|detK| = αn = δ ∈ Z+. (1)

Dyadic subsampling discards every second sample along

each of the n dimensions resulting in a δ = 2n reduction

rate. To allow for fine-grained scale progression we are

particularly interested in low subsampling rates, such as

δ = 2 or 3.
As discussed by van de Ville et al. [8], the 2D quin-

cunx subsampling is an interesting case permitting a two-

channel relation. With the implicit assumption of only

considering subsets of the Cartesian lattice it is shown

that a similarity two-channel dilation may not extend for

n > 2.
Here, we show that by permitting more general basis vec-

tors in Rn the desired fixed-rate dilation becomes possi-

ble for any n. Our construction produces a variety of lat-
tices making it possible to include additional quality cri-

teria into the search as they may be computed from the

Voronoi cell of the lattice [9] including packing density

and expected quadratic quantization error (second order

moment). Agrell et al. [1] improve efficiency for the com-

putation by extracting Voronoi relevant neighbours. An-

other possible sampling quality criterion appears in the

R =

[
0 −0.3307
1 −0.375

]
,K =

[
2 −1
4 −1

]
, θ = 69.3◦

!1.5 !1 !0.5 0 0.5 1 1.5
!1.5

!1

!0.5

0

0.5

1

1.5

Figure 1: 2D lattice with basis vectors and subsampling

as given by R and K in the diagram title. The spiral

shaped points correspond to a sequence of fractional sub-

samplingsRKs for s = 0..1 with the notable feature that
for s = 1 one obtains a subset of the original lattice sites
shown as thick dots. This repeats for any further integer

power of K, each time reducing the sample density by
|detK| = 2.

work of Lu et al. [4] in form of an analytic alias-free sam-

pling condition that is employed in a lattice search.

2. Lattice construction

We are looking for a non-singular lattice generatingmatrix

R that, when sub-sampled by a dilation matrixK with re-

duction rate δ = αn, results in a similarity-transformed

version of the same lattice, that is, it can be scaled and ro-

tated by a matrixQwithQTQ = α2I. An illustration of a
subsampling resulting in a rotation by θ = arccos 1

2
√

2
in

2D is given in Figure 1. Formally, this kind of relationship

can be expressed as

QR = RK (2)

leading to the observation that subsamplingK and scaled

rotationQ are related by a similarity transform

R−1QR = K. (3)

KT = T−1KT with detT = 1 and T ∈ Zn×n
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2D
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Figure 2: Three non-equivalent 2D lattices obtained for a design with dilation matrices having |detK| = 2. The lattice
on the left is the well known quincunx sampling with a θ = 45◦ rotation. The other two are new schemes with different
rotation angles. The black markers show the sample positions that are retained after subsampling byK.
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Figure 3: Three non-equivalent 2D lattices obtained for a design with dilation matrices having |detK| = 3. The lattice
on the left is the well known hexagonal lattice with a θ = 30◦ rotation. The other three are new schemes with different
rotation angles.

of the set q(A) = {kTAk : k ∈ Zn} using the Gram ma-
trices of the respective lattices. If the sorted lists q(A1)
and q(A2) disagree in any element, R1 and R2 are not

equivalent ([5], p. 60). It is possible to restrict the set of

indices k ∈ Zn to the Voronoi relevant neighbours [1].

Further, since these neighbours determine the hyperplanes

bounding the Voronoi polytope of the lattice, they can also

be used for a sufficient test for equivalence.

3. Constructions for different dimensions
and subsampling ratios

For the 2D case we have created lattices permitting a re-

duction rate 2 in Figure 2 and rate 3 in Figure 3. In both
cases, familiar examples arise in the quincunx and the hex

lattice for the respective ratios.

A search of 3D lattices enjoying the self-similar subsam-

pling property with rate 2 dilations resulted in 53 non-
equivalent cases. These lattices were compared in terms of

their dimensionless second order moments, corresponding

to the expected squared vector quantization error ([2], p.

451). When performing the continuous optimization men-

tioned at the end of Section 2.1, all of these cases con-

verged to the same optimum lattice shown in Figure 4.

The dimensionless second order moment for the Voronoi

Cell of this lattice is G = 0.081904. For comparison, the
Cartesian cube has Gcc = 0.0833 and the truncated octa-
hedron of the BCC lattice has Gbcc = 0.0785.

4. Discussion and potential applications

The current formation of candidate matrices K based on

similarity transforms of one valid example is not guaran-
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Figure 4: The best 3D lattice obtained for a design with

dilation matrices having |detK| = 2. The letters f and v

in the title line indicate faces and vertices, respectively.

teed to produce all possible solutions. For 2D and 3D we

also employed an exhaustive search over a range of integer

matrices with values in [−3, 3] resulting in the same num-
ber of non-equivalent 2D cases as the construction viaKT .

However, for dimensionality n > 3 the exhaustive search
had to be replaced by a random sampling of integer matri-

ces ultimately rendering the method infeasible for n > 5.
In that light the current construction via scaled eigenvec-

tors of the companion matrix is a significant improvement

as it allows to produce a large number of non-equivalent

lattices for any dimensionality.

Our subsampling schemes may have applications for mul-

tidimensional wavelet transforms [7]. Another direction

for possible investigation is the construction of sparse

grids that are employed in the context of high-dimensional

integration and approximation adapting to smoothness

conditions of the underlying function space [3].

|detK| = 2Dilation factor
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of the set q(A) = {kTAk : k ∈ Zn} using the Gram ma-
trices of the respective lattices. If the sorted lists q(A1)
and q(A2) disagree in any element, R1 and R2 are not

equivalent ([5], p. 60). It is possible to restrict the set of

indices k ∈ Zn to the Voronoi relevant neighbours [1].

Further, since these neighbours determine the hyperplanes

bounding the Voronoi polytope of the lattice, they can also

be used for a sufficient test for equivalence.

3. Constructions for different dimensions
and subsampling ratios

For the 2D case we have created lattices permitting a re-

duction rate 2 in Figure 2 and rate 3 in Figure 3. In both
cases, familiar examples arise in the quincunx and the hex

lattice for the respective ratios.

A search of 3D lattices enjoying the self-similar subsam-

pling property with rate 2 dilations resulted in 53 non-
equivalent cases. These lattices were compared in terms of

their dimensionless second order moments, corresponding

to the expected squared vector quantization error ([2], p.

451). When performing the continuous optimization men-

tioned at the end of Section 2.1, all of these cases con-

verged to the same optimum lattice shown in Figure 4.

The dimensionless second order moment for the Voronoi

Cell of this lattice is G = 0.081904. For comparison, the
Cartesian cube has Gcc = 0.0833 and the truncated octa-
hedron of the BCC lattice has Gbcc = 0.0785.

4. Discussion and potential applications

The current formation of candidate matrices K based on

similarity transforms of one valid example is not guaran-

!0.5

0

0.5
!0.5

0

0.5!0.8

!0.6

!0.4

!0.2

0

0.2

0.4

0.6

0.8

kissing # = 2, # f = 14, # v = 24, G(P) = 0.081904, # zones = 6

Figure 4: The best 3D lattice obtained for a design with
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teed to produce all possible solutions. For 2D and 3D we

also employed an exhaustive search over a range of integer

matrices with values in [−3, 3] resulting in the same num-
ber of non-equivalent 2D cases as the construction viaKT .

However, for dimensionality n > 3 the exhaustive search
had to be replaced by a random sampling of integer matri-

ces ultimately rendering the method infeasible for n > 5.
In that light the current construction via scaled eigenvec-

tors of the companion matrix is a significant improvement

as it allows to produce a large number of non-equivalent

lattices for any dimensionality.

Our subsampling schemes may have applications for mul-

tidimensional wavelet transforms [7]. Another direction

for possible investigation is the construction of sparse

grids that are employed in the context of high-dimensional

integration and approximation adapting to smoothness

conditions of the underlying function space [3].
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Rotational grid 
summary

• First time low-rate admissible dilation 
matrices are available for n>2

• Additional degrees of freedom in the design 
enable further optimization

• Current results allow optimized 
constructions up to n=9
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Model adjustment at 
different levels
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• User-driven experimentation: Use cases for paraglide

• Criteria optimization: Lighting design 

• Theoretical analysis: Sampling in volume rendering

• Filling a region: Lattices with rotational dilation

• Summary and conclusion
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Data taxonomy

• primary: field measurements

• secondary: synthetic data or human input

• tertiary: rules provided by theoretical study 
or statistical inference
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f(x) = 0.5 + 9
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(d) Sampling g(f(x)) at 4 times the bounding
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Figure 4.1: Sampling comparison. The data y = f(x) (a) is composed with a transfer function
g(y) (b). Figures (c) and (d) show sinc-interpolated samplings of g(f(x)). The tighter bounding
frequency (d) suggested in this paper results in 5 times fewer samples for these particular f and g,
still truthfully representing the composite signal.

dynamic range volumes and multi-modal or multi-dimensional data, such as (f, |f ′|), are yet
unknown. Typical estimates are based on a proper sampling of f alone, which neglects the

effect of the transfer function. In the following we present an estimate for suitable sampling

that takes the effect of the transfer function into account.

For that purpose, we investigate [BMWM06] the effects of function composition in the

form g(f(x)) = h(x) by means of a spectral analysis of h.1 Building on related work

discussed in Section 2.4.3, in Section 4.1 we provide a rigorous mathematical treatment that

decomposes the spectral description of h into a scalar product of the spectral description of

g and a term that solely depends on f and that is independent of g. We then use the method

of stationary phase to derive the essential maximum frequency of g(f(x)) bounding the main

portion of the energy of its spectrum. This limit is the product of the maximum frequency of

g and the maximum derivative of f . This leads to a proper sampling of the composition h of

the two functions g and f . We apply our theoretical results to a fundamental open problem

in volume rendering—the proper sampling of the rendering integral after the application of

a transfer function. In particular, Section 4.2 demonstrates how the sampling criterion can

1Note that the order of f and h is exchanged from the abstraction in Section 1.4. Also, interactive
parameter space exploration does not apply in this chapter.

Thank you! Questions?
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our understanding of user practices and design requirements (see Section 1.2), as well as

gathering summative feedback and anecdotal evidence (see Section 6.4).

!

"

#

#

Figure 6.1: Paraglide GUI running inside a MATLAB session to investigate the animal movement
model of Section 1.2.1. Initially, deliberately chosen parameter combinations are imported from
a switch/case script (a) by sampling the case selection variable of that script and recording the
variables it sets. An overview (b) of the data is given in form of a scatter plot matrix (SPloM)
for a chosen dimension group (h). Jython commands can be issued inside the command window
(c) demonstrating the plug-in functionality of the system by manually importing the experiment
module, which adds a new item to the menu bar (d). This allows to create a set of new sample
points inside the region that is selected for parameters qa and qal (e). The configuration dialog for
the MATLAB compute node (f) sets up a show command that produces a detail view of the spatio-
temporal pattern (1D+time) (g). For the configuration point highlighted in yellow in the SPloM,
this results in a pattern of two groups that merge and then progress upwards in a ’zigzag’ movement.

6.2.1 System components

The snapshot of Figure 6.1 shows the paraglide GUI and provides a brief overview of the

main steps of the interaction. In the left of the main window (Figure 6.1d) dimension group

tabs are shown that can be used to switch between selected subsets of variables. Right next

to it appears the view for an individual group of dimensions (h), which shows histograms

indicating the distribution of values for the respective variables. If a group has more than 8

dimensions, compact range selectors are shown instead of histograms. This frees up screen

space and eliminates computational costs for keeping their information updated, e.g. when
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quincunx, θ = 45◦ θ = arccos
√
2
2 ≈ 69.3◦ θ = 135◦

G =

[ √
2 0

0
√

2

]
, K =

[
−1 −1
1 −1

]
G =

[
0 0.61

−0.93 −0.23

]
, K =

[
−1 −1
2 0

]
G =

[
0 0.58

−1.22 0.41

]
, K =

[
1 −1
3 −1

]
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Figure 3.3: Three non-equivalent 2D lattices obtained for a design with dilation matrices having
|detK| = 2. The lattice in the first column is the known quincunx sampling with a rotation of
θ = 45◦. The other two are new schemes with different rotation angles. The thick dots show the
sample positions that are retained after subsampling by K. The second row shows the same lattice
at twice the density, with more iteration levels of similarity transformed Voronoi cells.
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Figure 3.4: Four non-equivalent 2D lattices obtained for a design with dilation matrices having
|detK| = 3. The lattice on the left is the well known hexagonal lattice with a θ = 30◦ rotation. The
other three are new schemes with different rotation angles.
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Fig. 1. Spectral design of two material reflectances shown on the left of their representative rows. The colors formed under two different illumination
spectra are shown in the squares in the respective columns where D65 (right column) produces a metameric appearance.

patch. Its surrounding area shows the color that the actual resulting spectra produce in combination with each other.
The design was successful if the desired and the actual colors are similar enough. The appearance of ’refl 2’ under the
high-pressure sodium lamp is dark brown instead of the desired gray, which is acceptable in this example.

3.1 Matrix Formulation

It is possible to approach the design problem by solving a linear equation system for a spectrum !x

Qrgb,31diag( !E)!x = !c, (16)

where Qrgb,31 is the spectrum to RGB conversion matrix2. The solution !x will be a reflectance producing the user-

specified color tri-stimulus !c under the given illumination spectrum !E. Further, one might ask for multiple lights !Ek

to produce colors !ck with reflectance !x. One can solve for this by vertically concatenating the illumination matrices

Qrgb,31diag( !Ek) = Q
( !Ek)
rgb,31 into a matrix M and their respective color forcing vectors !ck into a vector !y. As there

might not be a spectrum that fulfills all conditions exactly we switch from solving an equation system to a quadratic
minimization problem:

min!x||M!x − !y|| = min!x

[

!xT MT M!x − 2!yT M!x
]

, (17)

An unconstrained solution would be available via the pseudo-inverse M+ = (MT M)−1M as !x = M+!y. Alter-
natively, we use quadratic programming (QP), because it allows the inclusion of lower and upper bound constraints

for the components of !x. Note that the entire design could be carried out for a light !E instead of a reflectance !S, by

replacing !E with !S in Eq. 16. The solution !x would then contain a light !E producing color !c when illuminating the

given reflectance !S. This outlines the main idea behind the design method. We will refine it in the following by adding
more optional criteria, such as linear subspace model error minimization and smoothness via minimal second order
differences. Finally, all criteria are weighted and combined by concatenating them to form M and !y in a single QP
problem.

As shown in § 2.2.1, color computation can also be performed in the linear subspace. The 3 × m matrix that takes
an m-vector representation in basis B of Eq. 2 directly to RGB is Qrgb,m = Qrgb,31 B. The least squares problem

2The matrix may be formed as Qrgb,31 = Qrgb,xyz ·Qxyz,31, where the rows of Qxyz,31 are the 3× 31 set of color matching functions in the
CIE XYZ model [Wyszecki and Stiles 1982] and Qrgb,xyz is a hardware (monitor) dependent 3 × 3 matrix to transform XYZ to RGB.
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Fig. 1. Spectral design of two material reflectances shown on the left of their representative rows. The colors formed under two different illumination
spectra are shown in the squares in the respective columns where D65 (right column) produces a metameric appearance.

patch. Its surrounding area shows the color that the actual resulting spectra produce in combination with each other.
The design was successful if the desired and the actual colors are similar enough. The appearance of ’refl 2’ under the
high-pressure sodium lamp is dark brown instead of the desired gray, which is acceptable in this example.

3.1 Matrix Formulation

It is possible to approach the design problem by solving a linear equation system for a spectrum !x

Qrgb,31diag( !E)!x = !c, (16)

where Qrgb,31 is the spectrum to RGB conversion matrix2. The solution !x will be a reflectance producing the user-

specified color tri-stimulus !c under the given illumination spectrum !E. Further, one might ask for multiple lights !Ek

to produce colors !ck with reflectance !x. One can solve for this by vertically concatenating the illumination matrices

Qrgb,31diag( !Ek) = Q
( !Ek)
rgb,31 into a matrix M and their respective color forcing vectors !ck into a vector !y. As there

might not be a spectrum that fulfills all conditions exactly we switch from solving an equation system to a quadratic
minimization problem:

min!x||M!x − !y|| = min!x

[

!xT MT M!x − 2!yT M!x
]

, (17)

An unconstrained solution would be available via the pseudo-inverse M+ = (MT M)−1M as !x = M+!y. Alter-
natively, we use quadratic programming (QP), because it allows the inclusion of lower and upper bound constraints

for the components of !x. Note that the entire design could be carried out for a light !E instead of a reflectance !S, by

replacing !E with !S in Eq. 16. The solution !x would then contain a light !E producing color !c when illuminating the

given reflectance !S. This outlines the main idea behind the design method. We will refine it in the following by adding
more optional criteria, such as linear subspace model error minimization and smoothness via minimal second order
differences. Finally, all criteria are weighted and combined by concatenating them to form M and !y in a single QP
problem.

As shown in § 2.2.1, color computation can also be performed in the linear subspace. The 3 × m matrix that takes
an m-vector representation in basis B of Eq. 2 directly to RGB is Qrgb,m = Qrgb,31 B. The least squares problem

2The matrix may be formed as Qrgb,31 = Qrgb,xyz ·Qxyz,31, where the rows of Qxyz,31 are the 3× 31 set of color matching functions in the
CIE XYZ model [Wyszecki and Stiles 1982] and Qrgb,xyz is a hardware (monitor) dependent 3 × 3 matrix to transform XYZ to RGB.
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