Making choices in multi-dimensional parameter spaces

PhD thesis defence

Steven Bergner
gruvi \square graphics + usability + visualization

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Discretizing a region: Lattices with rotational dilation
- Summary and conclusion

Data acquisition and visualization

Turning code into data

- Computer simulation code
- Function abstraction
- Variables: input, output, and algorithm specific
- Deterministic code

Biological aggregations

(c) Sareh Nabi Abdolyousefi

Biological aggregations

Input
 Output

(c) Sareh Nabi Abdolyousefi

Biological aggregations

Biological aggregations

Input	Output
ID+time model I 4 parameters - attraction, repulsion, and alignment coefficients - turning rates internal: - space-time resolution influences cost	patterns: steady state bifurcation and stability: \qquad $\left(\mathbf{u}_{\mathbf{4}}^{*}, \mathbf{u}_{\mathbf{2}}^{*}\right)$

(c) Sareh Nabi Abdolyousefi

More cases

- Parameter space segmentation
- Bio-medical imaging algorithm
- Fuel cell design
- Scene lighting configuration
- Raycasting step size parameter

Paraglide design

Paraglide design

Set up compute node	
run default point show derived variables file I	$\begin{aligned} & h: \mathbb{R}^{n} \rightarrow D \\ & \mathbf{x}_{0} \in \mathbb{R}^{n} \\ & (\mathbf{x}, \mathbf{y}) \mapsto \operatorname{plot}(\mathbf{x}, \mathbf{y}) \\ & g_{i}: \mathbf{x} \mapsto y_{i} \\ & (\mathbf{x}, \mathbf{y}) \mapsto \text { write } / \operatorname{read}(\mathbf{x}, \mathbf{y}) \end{aligned}$
Group variables/dims	Sample in
\#dims $n_{l} \leq n+r$	$X \subset M,\|X\|=m$
	\downarrow
Specify ROI	Compute outputs
region of interest $M \subset \mathbb{R}^{n+r}$	$h: \begin{aligned} & \text { : } \\ & \text { for resolution } s\end{aligned}$
	\downarrow V
View data (sub-)space	Derive variables
restrict to ROI M \#dims overview n_{l} bi-variate view 2 histogram 1 detail view 0	$\mathrm{g}:(\mathrm{x}, \tilde{\mathbf{y}}) \mapsto\left(y_{1}, y_{2}, \ldots, y_{r}\right)$
	features
	objectives embedding coordinates
	cluster membership
	\checkmark A
Assign variables	Distance metric
assign manually $\quad \mapsto y_{i}$ trigger computation for m points and resolution s	$d_{r}: \mathbb{R}^{r} \times \mathbb{R}^{r} \rightarrow \mathbb{R}^{+}$ $d_{c}:\left(\mathbb{R}^{n+r} \times Y\right)^{2} \rightarrow \mathbb{R}^{+}$

Set up compute node

Paraglide design

- Setup compute node

Paraglide design

- Setup compute node
- Choose variables

Paraglide design

- Setup compute node
- Choose variables
- Choose region

Paraglide design

- Setup compute node
- Choose variables
- Choose region
- Sample and compute

Paraglide design

- Setup compute node
- Choose variables
- Choose region
- Sample and compute
- Compute features

Paraglide design

- Setup compute node
- Choose variables
- Choose region
- Sample and compute
- Compute features
- View, predict, diagnose

Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence

Sampling the region of interest

Sampling the region of interest

- Tensor product of value levels for each dimension

Nested for-loops
Cost is exponential in \#dims

Sampling the region of interest

- Tensor product of value levels for each dimension
- Nested for-loops
- Cost is exponential in \#dims
- Separate range specification from sample generation

Sampling the region of interest

- Tensor product of value levels for each dimension
- Nested for-loops
- Cost is exponential in \#dims
- Separate range specification from sample generation

Paraglide summary

- Longitudinal study showed use of parameter space partitioning
- Requirements informed follow-up projects
- Alternative user interaction
- Dimensionally reduced slider embedding
- Mixing board
- Video demo

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Discretizing a region: Lattices with rotational dilation
- Summary and conclusion

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Discretizing a region: Lattices with rotational dilation
- Summary and conclusion

Roadmap

- From light to colour
- Efficient light model
- Designing spectra for lights and materials
- Evaluation
- Applications

From Light to Colour

Light I

Use for Visualization

Light 2

Light I

Use for Visualization

- Metamers
- Different Spectra give same RGB

Light 2

Light I

Use for Visualization

- Metamers
- Different Spectra give same RGB
- Constant Colours
- Metamers under changing light

Light I

Use for Visualization

- Metamers
- Different Spectra give same RGB
- Constant Colours
- Metamers under changing light
- Metameric Blacks
- Spectra give RGB triple $=0$

Light I

Use for Visualization

- Metamers
- Different Spectra give same RGB
- Constant Colours
- Metamers under changing light
- Metameric Blacks
- Spectra give RGB triple $=0$
- Effective choice of light \& material palette needed!

Light 2

Roadmap

- From light to colour
- Efficient light model
- Designing spectra for lights and materials
- Evaluation
- Applications

Roadmap

- From light to colour
- Efficient light model
- Designing spectra for lights and materials
- Evaluation
- Applications

Illumination Dependent Colour Picker

Quality Criteria

- Colour
- Fit the desired colour or metamer
- Smoothness
- Regularize solution and reduce extrema
- Minimal error in linear model
- Minimal colour difference when illumination bounce is computed in linear subspace
- Positivity
- Produce physically plausible spectra

Quality Criteria

Quality Criteria

- Instead of equation system $\mathbf{M} \vec{x}=\vec{y}$ for spectrum \vec{x} Solve normal equation $\operatorname{argmin}_{\vec{x}}\|\mathbf{M} \vec{x}-\vec{y}\|$

Quality Criteria

- Instead of equation system
$\mathbf{M} \vec{x}=\vec{y}$ for spectrum \vec{x}
Solve normal equation $\operatorname{argmin}_{\vec{x}}\|\mathbf{M} \vec{x}-\vec{y}\|$
- Colour: $\quad \operatorname{argmin}_{\vec{x}}\left\|\left[\begin{array}{c}\mathbf{m}_{\text {red }} \\ \mathbf{m}_{\text {green }} \\ \mathbf{m}_{\text {blue }}\end{array}\right] \operatorname{diag}(\vec{S}) \vec{x}-\left[\begin{array}{c}c_{r} \\ c_{g} \\ c_{b}\end{array}\right]\right\|$

Quality Criteria

- Instead of equation system
$\mathbf{M} \vec{x}=\vec{y}$ for spectrum \vec{x} Solve normal equation $\operatorname{argmin}_{\vec{x}}\|\mathbf{M} \vec{x}-\vec{y}\|$
- Colour: $\quad \operatorname{argmin}_{\vec{x}}\left\|\left[\begin{array}{c}\mathbf{m}_{\text {red }} \\ \mathbf{m}_{\text {green }} \\ \mathbf{m}_{\text {blue }}\end{array}\right] \operatorname{diag}(\vec{S}) \vec{x}-\left[\begin{array}{c}c_{r} \\ c_{g} \\ c_{b}\end{array}\right]\right\|$
- Smoothness: $_{\operatorname{argmin}}^{\vec{x}}\left\|\left[\begin{array}{cccccc}-1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ & & & \ddots & & \\ 0 & 0 & \cdots & -1 & 2 & -1\end{array}\right] \vec{x}-\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]\right\|$

Quality Criteria

- Instead of equation system $\mathbf{M} \vec{x}=\vec{y}$ for spectrum \vec{x} Solve normal equation $\operatorname{argmin}_{\vec{x}}\|\mathbf{M} \vec{x}-\vec{y}\|$
- Colour: $\quad \operatorname{argmin} \vec{x}\left\|\left[\begin{array}{c}\mathbf{m}_{\text {red }} \\ \mathbf{m}_{\text {green }} \\ \mathbf{m}_{\text {blue }}\end{array}\right] \operatorname{diag}(\vec{S}) \vec{x}-\left[\begin{array}{c}c_{r} \\ c_{g} \\ c_{b}\end{array}\right]\right\|$
- Smoothness: argmin $\vec{x}\left\|\left[\begin{array}{cccccc}-1 & 2 & -1 & 0 & \cdots & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 \\ & & & \ddots & & \\ 0 & 0 & \cdots & -1 & 2 & -1\end{array}\right] \vec{x}-\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right]\right\|$
- Weight the criteria and combine as stacked matrix
- Global minimum error solution via pseudo-inverse of \mathbf{M}
- Positivity through quadratic programming

Roadmap

- From light to colour
- Efficient light model
- Designing spectra for lights and materials
- Evaluation
- Applications

Materials and lighting

Materials and lighting

Given: Output	Goal: Input

Materials and lighting

Given: Output	Goal: Input
- 3×5 combination colours with 3 components each	

Materials and lighting

Image based re-lighting

Image based re-lighting

Image based re-lighting

Applications in Graphics and Visualization

- Additional texture details appear under changing illumination

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Filling a region: Lattices with rotational dilation
- Summary and conclusion

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Filling a region: Lattices with rotational dilation
- Summary and conclusion

Volume Rendering

- Map data value f to optical properties using a transfer function $\quad g(f(x))$

Volume Rendering

- Map data value f to optical properties using a transfer function $\quad g(f(x))$
- Then shading+compositing

Volume Rendering

- Map data value f to optical properties using a transfer function $\quad g(f(x))$
- Then shading+compositing

Steven Bergner - Making choices

Volume Rendering

- Map data value f to optical properties using a transfer function $\quad g(f(x))$
- Then shading+compositing

Opacity

Volume Rendering

- Map data value f to optical properties using a transfer function $\quad g(f(x))$
- Then shading+compositing

Opacity

Example of $g(f(x))$

Example of $g(f(x))$

Original function $f(x)$

Example of $g(f(x))$

Original function $\mathrm{f}(\mathrm{x})$

Example of $g(f(x))$

Original function $f(x)$

Example of $g(f(x))$

$g(f(x))$ sampled by $\frac{\pi}{2} v_{f} v_{g}$

Composition in Frequency Domain
 $$
g\left(\begin{array}{ll} y &) \end{array}\right)=\frac{1}{\sqrt{2 \pi}} \int_{R} G(l) e^{i l \cdot y} d l
$$

Composition in Frequency Domain
 $h(x)=g(f(x))=\frac{1}{\sqrt{2 \pi}} \int_{R} G(l) e^{i l \cdot f(x)} d l$

Composition in Frequency Domain
 $h(x)=g(f(x))=\frac{1}{\sqrt{2 \pi}} \int_{R} G(l) e^{i l \cdot f(x)} d l$

$H(k)$

$$
\int_{R} G(l) e^{i l \cdot f(x)} d l
$$

Composition in Frequency Domain

$h(x)=g(f(x))=\frac{1}{\sqrt{2 \pi}} \int_{R} G(l) e^{i \cdot f(x)} d l$
$H(k)=\frac{1}{2 \pi} \int_{R} \int_{R} G(l) e^{i l \cdot f(x)} d l e^{-i k \cdot x} d x$

Composition in Frequency Domain

$h(x)=g(f(x))=\frac{1}{\sqrt{2 \pi}} \int_{R} G(l) e^{i l \cdot f(x)} d l$
$H(k)=\frac{1}{2 \pi} \int_{R} \int_{R} G(l) e^{i l \cdot f(x)} d l e^{-i k \cdot x} d x$
$H(k)=\frac{1}{2 \pi} \int_{R} G(l) \int_{R} e^{i l \cdot f(x)} e^{-i k \cdot x} d x d l$

Composition in Frequency Domain

$h(x)=g(f(x))=\frac{1}{\sqrt{2 \pi}} \int_{R} G(l) e^{i l \cdot f(x)} d l$
$H(k)=\frac{1}{2 \pi} \int_{R} \int_{R} G(l) e^{i l \cdot f(x)} d l e^{-i k \cdot x} d x$
$H(k)=\frac{1}{2 \pi} \int_{R} G(l) \int_{R} e^{i l \cdot f(x)} e^{-i k \cdot x} d x d l$

Composition in Frequency Domain

$h(x)=g(f(x))=\frac{1}{\sqrt{2 \pi}} \int_{R} G(l) e^{i l \cdot f(x)} d l$
$H(k)=\frac{1}{2 \pi} \int_{R} \int_{R} G(l) e^{i l \cdot f(x)} d l e^{-i k \cdot x} d x$
$H(k)=\frac{1}{2 \pi} \int_{R} G(l) \int_{R} e^{i l \cdot f(x)} e^{-i k \cdot x} d x d l$

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x
$$

Visualizing P(k,l)

$P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>$

Visualizing P(k,l)

$P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}\langle G(\cdot), P(k, \cdot)\rangle$

Visualizing P(k,l)

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing P(k,l)

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing P(k,l)

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing P(k,l)

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing P(k,l)

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing P(k,l)

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing P(k,l)

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing $\mathrm{P}(\mathrm{k}, \mathrm{l})$

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing $\mathrm{P}(\mathrm{k}, \mathrm{l})$

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing $\mathrm{P}(\mathrm{k}, \mathrm{l})$

$$
P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x \quad H(k)=\frac{1}{2 \pi}<G(\cdot), P(k, \cdot)>
$$

Visualizing P(k,l)

Visualizing P(k,l)

Visualizing P(k,l)

Visualizing $P(k, l)$

- Slopes of lines in $P(k, I)$ are related to $1 / f^{\prime}(x)$

Visualizing $P(k, l)$

- Slopes of lines in $P(k, I)$ are related to $1 / f^{\prime}(x)$
- Extremal slopes bounding the wedge are $1 / \max \left(f^{\prime}\right)$

Method of stationary phase
 $P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x$

$\ln |P(k, 1)|$

Method of stationary phase
 $P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x$

$\ln |P(k, 1)|$

Method of stationary phase
 $P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x$

$\ln |P(k, 1)|$

Method of stationary phase

$P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x$

- Taylor expansion around points of stationary phase
- Exponential drop-off at maximum $l \cdot \max \left|f^{\prime}\right|=k$

Method of stationary phase

$P(k, l)=\int_{R} e^{i(l \cdot f(x)-k \cdot x)} d x$

- Taylor expansion around points of stationary phase
- Exponential drop-off at maximum $l \cdot \max \left|f^{\prime}\right|=k$

Adaptive Raycasting

Same number of samples

Intuition
 Adaptive Raycasting SNR
 Quality vs. Performance

Ground-truth: computed at a fixed sampling distance of 0.06125

Summary

- Proper sampling of combined signal $g(f(x))$:

$$
v_{h}=\max \left(\left\|f^{\prime}\right\|\right) \cdot v_{g}
$$

- Solved a fundamental problem of rendering
- Composition is a general data processing operation

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Filling a region: Lattices with rotational dilation
- Summary and conclusion

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Filling a region: Lattices with rotational dilation
- Summary and conclusion

Point lattices

- Definition via basis \mathbf{R}

Point lattices

- Definition via basis $\left\{\mathbf{R} k: k \in \mathbb{Z}^{n}\right\}$

$\mathbf{R}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\mathbf{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=2 \mathbf{I} \quad \operatorname{det} \mathbf{K}=2^{n}=4
$$

dyadic subsampling

$$
\mathbf{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=2 \mathbf{I} \quad \operatorname{det} \mathbf{K}=2^{n}=4
$$

dyadic subsampling

$$
\mathbf{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=2 \mathbf{I} \quad \operatorname{det} \mathbf{K}=2^{n}=4
$$

Reduction factor is exponential in n

$$
\mathbf{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=2 \mathbf{I} \quad \operatorname{det} \mathbf{K}=2^{n}=4
$$

Reduction factor is exponential in n

$\mathbf{R}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$\mathbf{R}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \quad \operatorname{det} \mathbf{K}=2$

quincunx subsampling

$\mathbf{R}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \quad \operatorname{det} \mathbf{K}=2$

quincunx subsampling

$$
\mathbf{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \operatorname{det} \mathbf{K}=2
$$

This low rate dilation does not exist for integer lattices

with $n>2$
[Van De Ville, Blu, Unser, SPL 05]
quincunx subsampling

$$
\mathbf{R}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \quad \operatorname{det} \mathbf{K}=2
$$

This low rate dilation does not exist for integer lattices

with $n>2$
[Van De Ville, Blu, Unser, SPL 05]
However, possible for irrational R !

quincunx subsampling

$\mathbf{R}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \quad \operatorname{det} \mathbf{K}=2$

quincunx subsampling
$\mathbf{R}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \quad \operatorname{det} \mathbf{K}=2$

$\mathbf{R K}^{s}$ for $s=0 . .2$
quincunx subsampling
$\mathbf{R}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \mathbf{K}=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right] \quad \operatorname{det} \mathbf{K}=2$

$$
\mathbf{R K}^{s} \text { for } s=0 . .2
$$

acts like a scaled rotation QR
with $\mathbf{Q}^{T} \mathbf{Q}=\alpha^{2} \mathbf{I}$
quincunx subsampling

Construction

Similarity of Q and K

$$
\mathbf{Q R}=\mathbf{R K} \text { with } \mathbf{Q}^{T} \mathbf{Q}=\alpha^{2} \mathbf{I}
$$

Similarity of Q and K

$\mathbf{Q R}=\mathbf{R K} \quad$ with $\quad \mathbf{Q}^{T} \mathbf{Q}=\alpha^{2} \mathbf{I}$

$\mathbf{R}^{-1} \mathbf{Q R}=\mathbf{K}$

Similarity of Q and K

$\mathbf{Q R}=\mathbf{R K}$ with $\quad \mathbf{Q}^{T} \mathbf{Q}=\alpha^{2} \mathbf{I}$

$$
\mathbf{R}^{-1} \mathbf{Q R}=\mathbf{K}
$$

- K and Q have same characteristic polynomial $d(\lambda)=\operatorname{det}(\mathbf{K}-\lambda \mathbf{I})=\operatorname{det}(\mathbf{Q}-\lambda \mathbf{I})$

Similarity of Q and K

$\mathbf{Q R}=\mathbf{R K}$ with $\quad \mathbf{Q}^{T} \mathbf{Q}=\alpha^{2} \mathbf{I}$

$$
\mathbf{R}^{-1} \mathbf{Q R}=\mathbf{K}
$$

- K and Q have same characteristic polynomial $d(\lambda)=\operatorname{det}(\mathbf{K}-\lambda \mathbf{I})=\operatorname{det}(\mathbf{Q}-\lambda \mathbf{I})$

$$
=\sum_{k=0}^{n} c_{k} \lambda^{k} \in \mathbb{Z}[\lambda]
$$

Similarity of Q and K

$\mathbf{Q R}=\mathbf{R K}$ with $\quad \mathbf{Q}^{T} \mathbf{Q}=\alpha^{2} \mathbf{I}$
$\mathbf{R}^{-1} \mathbf{Q R}=\mathbf{K}$

- K and Q have same characteristic polynomial $d(\lambda)=\operatorname{det}(\mathbf{K}-\lambda \mathbf{I})=\operatorname{det}(\mathbf{Q}-\lambda \mathbf{I})$

$$
=\sum_{k=0}^{n} c_{k} \lambda^{k} \in \mathbb{Z}[\lambda]
$$

and thus agree in eigenvalues and determinant.

Diagonalizing rotation Q

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
j & -j
\end{array}\right]\left[\begin{array}{cc}
e^{j \theta} & 0 \\
0 & e^{-j \theta}
\end{array}\right]\left[\begin{array}{cc}
1 & j \\
1 & -j
\end{array}\right]
$$

$$
=\mathbf{J}_{2}^{-1} \boldsymbol{\Delta} \mathbf{J}_{2}
$$

Diagonalizing rotation Q

$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ j & -j\end{array}\right]\left[\begin{array}{cc}e^{j \theta} & 0 \\ 0 & e^{-j \theta}\end{array}\right]\left[\begin{array}{cc}1 & j \\ 1 & -j\end{array}\right]$

$$
=\mathbf{J}_{2}^{-1} \boldsymbol{\Delta} \mathbf{J}_{2}
$$

Different eigenvalue structure for even and odd dimensionality
$\boldsymbol{\Delta}=\left[\begin{array}{ccccc}e^{j \theta_{1}} & & & & \\ & e^{-j \theta_{1}} & & & \\ & & e^{j \theta_{2}} & & \\ & & & e^{-j \theta_{2}} & \\ & & & & \ddots\end{array}\right] \quad \boldsymbol{\Delta}=\left[\begin{array}{lllll}1 & & & \\ & e^{j \theta_{1}} & & \\ & & e^{-j \theta_{1}} & \\ & & & \ddots\end{array}\right]$
With analogue block-wise construction of \mathbf{J}_{n}

Diagonalizing rotation Q

$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ j & -j\end{array}\right]\left[\begin{array}{cc}e^{j \theta} & 0 \\ 0 & e^{-j \theta}\end{array}\right]\left[\begin{array}{cc}1 & j \\ 1 & -j\end{array}\right]$

$$
=\mathbf{J}_{2}^{-1} \boldsymbol{\Delta} \mathbf{J}_{2}
$$

Different eigenvalue structure for even and odd dimensionality restricts characteristic polynomial:

- n even: $d(\lambda)=\lambda^{n}+C \lambda^{\frac{n}{2}}+\alpha^{n}$ with $C^{2}<4 \alpha^{n}$
- n odd: $d(\lambda)=\lambda^{n}-\alpha^{n}$

Finding suitable K

Finding suitable K

- Fulfill conditions implied by $\mathrm{QR}=\mathbf{R K}$

Finding suitable K

- Fulfill conditions implied by $\mathrm{QR}=\mathbf{R K}$
- Exhaustive search over range of $\mathbf{K} \in \mathbb{Z}^{n \times n}$

Finding suitable K

- Fulfill conditions implied by $\mathrm{QR}=\mathbf{R K}$
- Exhaustive search over range of $\mathbf{K} \in \mathbb{Z}^{n \times n}$
- Companion matrix $\mathrm{K}=\left[\begin{array}{ccccc}0 & & & & -c_{0} \\ 1 & 0 & & & -c_{1} \\ & 1 & 0 & & \vdots \\ & & \ddots & \ddots & -c_{n-2} \\ & & & 1 & -c_{n-1}\end{array}\right]$

Finding suitable K

- Fulfill conditions implied by $\mathrm{QR}=\mathbf{R K}$
- Exhaustive search over range of $\mathbf{K} \in \mathbb{Z}^{n \times n}$
- Companion matrix $\mathrm{K}=\left[\begin{array}{ccccc}0 & & & & -c_{0} \\ 1 & 0 & & & \\ & 1 & 0 & & -c_{1} \\ & & \ddots & \ddots & -c_{n-2} \\ & & & 1 & -c_{n-1}\end{array}\right]$
- More with unimodular similarity transforms

$$
\mathbf{K}_{T}=\mathbf{T}^{-1} \mathbf{K} \mathbf{T} \text { with } \operatorname{det} \mathbf{T}=1 \text { and } \mathbf{T} \in \mathbb{Z}^{n \times n}
$$

Results

2D

1: $\quad R=[0.71-0 ;-0.711 .4]$ $\mathrm{K}=[2-2 ; 10] \theta=45$

2: $R=\left[\begin{array}{c}0.58 ;-1.70 .65] \\ K=[2-1 ; 4-1] \quad \theta=69.3\end{array}\right.$

$$
\begin{gathered}
\text { 3: } \quad R=\left[\begin{array}{ll}
0 & 0.84 ;-1.20
\end{array}\right] \\
K=[0-1 ; 20] \theta=90
\end{gathered}
$$

Dilation factor $|\operatorname{det} \mathbf{K}|=2$

2D

Dilation factor $|\operatorname{det} \mathbf{K}|=3$

Rotational grid summary

- First time low-rate admissible dilation matrices are available for $n>2$
- Additional degrees of freedom in the design enable further optimization
- Current results allow optimized constructions up to $\mathrm{n}=9$

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Filling a region: Lattices with rotational dilation
- Summary and conclusion

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Filling a region: Lattices with rotational dilation
- Summary and conclusion

Data taxonomy

- primary: field measurements
- secondary: synthetic data or human input
- tertiary: rules provided by theoretical study or statistical inference

Model adjustment at different levels

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Filling a region: Lattices with rotational dilation

Model adjustment at different levels

User input

- User-driven experimentation: Use cases for paraglide
- Criteria optimization: Lighting design
- Theoretical analysis: Sampling in volume rendering
- Filling a region: Lattices with rotational dilation

Acknowledgements

- Torsten Möller and Derek Bingham
- GrUVi-Lab members
- Collaborators: SFU -CS, -Maths, and -Stats BIG @ EPFL
- Funding: SFU, Precarn, and NSERC

Thank you! Questions?

Steven Bergner - Making choices in multi-dimensional parameter spaces - PhD thesis defence

