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ABSTRACT

A hierarchical framework for the recognition of complex
deformable shapes is developed. In extension to traditional
approaches an additional layer of control is introduced to
guide the local search for subshapes. This is realized by
incorporating knowledge about their spatial relationships.
A new technique of expectation maps is applied to allow
simultaneous shape searches to influence each other. Fur-
thermore, these maps are used to assess spatial coherence
among shapes. Thus, the occurrence of well matched shapes
at some places in the image may suggest searches for related
shapes at other positions. An application to classify species
in ant image databases shows promising initial results.

1. INTRODUCTION

The automated recognition of complex shapes is of great
interest for numerous applications. An area where the anal-
ysis of complex deformable shapes plays a fundamental role
is the discipline of systematics. Different species are clas-
sified and named according to their morphological similar-
ities. As more species are discovered and catalogues are
growing, more sophisticated tools are needed to assist the
researchers. The new structural deformable model presen-
ted here is applied to a set of images of ant databases as they
can be publicly accessed over the Internet1. The images
are taken in colour from standardized perspectives using
macro-photography. Thus, although the animals are three-
dimensional, it is possible to solve the problem of classifi-
cation applying a 2D shape search.

A common problem of deformable shape search approa-
ches is their dependency on initialisation. A local search
converges within a certain radius. Hamarneh et al. [1] have
discussed an additionalbrain layer to add ‘self awareness’
to their deformable organism. This layer employs a num-
ber of techniques for artificial intelligence (AI) to guide the
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1Two sources used here are from the Museum of Compara-

tive Zoology at Harvard University, to be found at http://mcz-
28168.oeb.harvard.edu/mcztypedb.htm, and AntWeb by the Californian
Academy of Sciences located at www.antweb.org

shape search out of mislead approaches. Our approach is in-
spired by this idea of introducing further layers of control.
A complex shape is split into multiple sub-shapes. Thus,
it is possible to separately analyse thetypical deformation
behaviour of the sub-shapes and theirspatial relationships.
Thisstructural knowledgecan now be used to guide the sub-
shape searches and to relate them in a way so they can assist
each other.

2. RELATED WORK

Techniques for shape representation can be distinguished
into dynamicandstatisticalmodels. The first is employing
a dynamic, mostly physically based, system to model defor-
mation. A popular method are active contours or so called
snakesintroduced by Terzopoulos et al. in 1988 [2]. A con-
tour is formed to minimise an energy potential made of in-
ternal constraints of rigidity and stiffness and external influ-
ences of image features and landmarks. The characteristics
of a shape may be represented using finite element mod-
els (FEM) as discussed by Pentland and Sclaroff [3]. They
make use of free vibration modes of a given deformable
template to obtain a more significant (low-frequency) rep-
resentation. A general advantage of dynamic models is an
intuitive deformation behaviour. It allows for instant use
without any training. Nevertheless, acorrect treatment of
deformation relies on an appropriate adjustment of the phys-
ical parameters, which is still an open problem.

The most influential representative among the class of
statistical modelsis theactive shape model(ASM) devel-
oped by Cootes et al. [4]. The set of training data con-
sists of landmarked example images. It is analysed for the
statistical variation modes of the point distribution yielding
a point distribution model (PDM). It compactly represents
typical deformations and inherently provides a measure for
shape comparison. Active appearance models (AAM) are
extending the method to incorporate texture variation into
the model [5]. Statistical models are a good way of analy-
sing of what istypical about a shape. A drawback of such
models is reliance on training data.

Structural modelscombine basic shape representations
on a higher level. The FORMS framework by Zhu and



Yuille [6] is arranging deformed worms and circles to form
the contour of an object. The characteristics of the shapes
are described, but their spatial relationships are restricted
to connection points along the medial axis. A drawback
of their method is that the shape matching is only work-
ing on readily extracted silhouettes. Also, the shapes of the
parts are not influencing each other. A recent development
by Al-Zubi et al. [7] is addressing this problem of struc-
tural covariation. Their approach ofactive shape structural
models(ASSM) combines the advantages of structural and
statistical shape representations. A single shape is statisti-
cally evaluated in terms of other shapes it relates to in the
structure. Thisshape contextis used to narrow statistical
variation of shape constituents based on the role they play
in the composition. The incorporation of structural know-
ledge into statistical evaluation allows to extract more de-
scriptive local characteristics of single shapes. Thus, the
model is capable of comparing and characterising shapes
based on structural and shape variability, which makes it a
very promising approach for many domains. The approach
presented in this paper is different in terms of the underlying
shape model. We are using a dynamic model to increase the
instant usability of the method without extensive training. A
fusion of the statistical and the dynamic approach to a com-
bined structural model remains subject to future research.

As mentioned above, a problem of deformable shape
searches is their tendency to get distracted by local minima.
For that it is possible to investigate more elaboratesearch
strategies. Hill et al. [8] have successfully employed genetic
algorithms (GA) to match a deformable model to medical
data. Their results show convergence independent of the
random initialisation. A recent approach by Felzenszwalb
[9] employsdynamic programmingto efficiently perform a
full search obtaining a globally optimal solution for a given
energy function. Although, these methods yield very promis-
ing results, they are restricted to simple shape descriptions.

3. STRUCTURAL DEFORMABLE MODELS

Our approach is designed to deal with complex arrange-
ments of several shapes that are combined through higher
order structural relationships. Dynamic models can be made
even more powerful by introducing structural knowledge
about spatial relationships to other shapes into the control
layer. This further reduces the search space. At the same
time it requires more guidance so structure and deformation
correspond to each other. The architecture of our system for
detecting ant shapes, as shown in Fig. 1, is chosen to make
use of well established solutions as much as possible. The
data is processed by a set of feature extractors or so-called
sensors. They are attached to nodes of an FEM shape model
that is performing a (local) shape matching. The two top-
most layers of the scheme are the new concepts that will be

Fig. 1. The framework is formed as a hierarchy of different
layers of processing.

discussed below. Thefindercontrol the evolution of shapes
in order to escape local minima. Structural knowledge is ap-
plied to connect finders. This allows them to communicate
and adjust each others search focus. Combinations of sub-
shapes form more complex objects. These are evaluated by
accumulating quality measures for the subshapes and struc-
tural relations between them. The output of the system are
several structural interpretations and their ratings.

The system is operating on 2D colour images. Thefea-
ture extractionis set up as a number of cascaded processing
steps. Basic methods that are applied here are statistical
colour classification, edge extraction and curvature detec-
tion. The operations may be computed on different levels in
Gaussian scale space. Coarser scales of resolution are used
to distribute features over a larger radius and to thus support
convergence of the shape.

Theshape matchingis performed using FEM shape de-
scriptions. The nodes of this model are mass points that
have a certain feature sensor attached. Nodes at the con-
tour are being attracted by edges, inner nodes are attracted
towards larger distribution of ant skin colour in the image.
The gradient of the feature intensity at the node position is
posing a force at the node. The shape of the model is main-
tained by the edges between the nodes that are acting as
springs. Once the model is placed inside the image inter-
nal shape forces and external image forces begin to act on
the model. The whole system comes to rest as the forces
balance out (reach equilibrium). The physical parameters
involved are set to values that yield reasonable default be-
haviour of the shape. Details of parameter selection can be
found in [10]. We note that in general the dynamic model
satisfactorily finds a shape in the image if it is placed suffi-
ciently close to the target structure. Thus, shape matchingis
not guaranteed to succeed from any arbitrary initialisation.

3.1. Stochastic search using expectation maps

Using a dynamic model has the advantage that it is oper-
ational without any further training. The drawback is its



strong dependency on the initialisation, which requires an
additional guidance mechanism. Thus, a global search is
performed for possible initialisations on a coarser scale.This
is done in the four-dimensional space of(cx, cy, s, φ), where
cx andcy are the coordinates of the centroidc of a shape,s
is an indication of the size of the shape, andφ is the angle
of its orientation. A representation of a shape in this space
is called itsproperty vector.

A finder is applying one specific shape model to the
image. Several instances of the model are simultaneously
moving on the image. As time progresses bad shapes are
removed and new ones are spawned according to a certain
probability distribution. To evaluate what is a fitness of an
instance we compute aquality of fitfunction (QOF). It con-
sists of two components, the data fit and the shape fit. The
data fit is evaluated as average sensor response at each node.
The shape fit is computed as a ratio of the sum of all edge
lengths over the sum of all spring rest lengths. This pro-
vides a size independent measure of deformation. The re-
sulting quality value is mapped to the interval[0, 1] to allow
for better comparison among different shapes.

Fig. 2. Expectation maps are passed to the finder to indicate
areas of higher anticipation. The image is showingPheidole
carribaea sloanei.

To generate property vectors for new shape searches we
use anexpectation mapthat is passed to the finder. An ex-
ample of such a map is given in Fig. 2. Based on the position
of the head, a search area for the back can be estimated. The
dotted line shows the resulting match for the back. Expecta-
tion maps are also used torate spatial relationshipbetween
shapes as used below. This makes them a convenient means
to exchanges information among different shape finders. As
long as nothing is known about the quality function a uni-
form distribution is used to generate new model instances.
As experience increases this information may be refined by
narrowing the probability distribution. This is comparable
to the technique of importance sampling.

The input to a finder is a prototype shape model and an
expectation map. As the search proceeds alist of winners
can be obtained. Winners are selected based on their QOF.
Selecting too many candidates is not problematic as long as
the correct shape match is contained in the set. The existing

method may be replaced by other methods such as ASM if
a QOF can be computed for this representation.

3.2. Representing structural knowledge

Using the expectation maps it is possible to incorporate struc-
tural knowledge into the search that spatially relates the
shapes to each other. The structural representation that we
have applied to our test datasets is depicted in Fig. 3. It
consists of the shape constituents, the spatial relationships
(indicated by the arrows) and interpretation paths (shown as
dotted lines). For each of the shapes a separate finder is em-
ployed. The spatial relationships are obtained statistically
and are refined as more training data is confirmed by the
user.

As the search process evolves, the lists of winners from
the finders are used to generate expectation maps for ad-
jacent shape finders. This way they are influencing each
other to focus on certain ranges in search space. This yields
an autonomous cooperative search for higher order struc-
tures. As the finders are running simultaneously the overall
structural match improves over time. A possible combina-
tion of shape constituents is rated using a weighted additive
combination of ratings:qp =

∑
i ωiqi +

∑
i θir(ei0, ei1),

whereqi is the QOF for a shape,r(ei0, ei1) is the rating
for the spatial relationship between two shapes. This is in-
dicated by the start and end indicesei0 andei1 of an edge
ei. Finally, the weightsωi andθi are putting different em-
phasis on shapes and connections. For each of the possible
interpretations an optimal combination of shape candidates
is obtained with respect to the above rating function. This is
done by performing an exhaustive search that is accelerated
using dynamic programming.

Fig. 3. Ant graph showing all important parts of the struc-
tural representation.



4. APPLICATION TO ANT DATABASES

Ant databases are a good example to test the structural mo-
del. It would be desirable to build models for single spe-
cies. Unfortunately, since most databases have only one
or very few examples for each species, it was necessary to
generalise among distinct genera. We restricted ourselves
to three different genera of antsPheidole, Anochetus, and
Cerapachys. The goal is to identify a genus by looking for
significant morphological properties. Fig. 4 shows the out-
put of the algorithm for different images. A test run on 75

(a) (b)

(c) (d)

Fig. 4. Multi-structure search showing the best rated inter-
pretation. a,b)Pheidole subarmata, c) Anochetus haytianus
d) Cerapachys vitiensis

images of classPheidolehas been performed and resulted
in 84% correctly classified images. This result has to be in-
terpreted with care. The operation has not been performed
on the full database. The species used as input were chosen
for clear appearance of the depicted species. So the detec-
tion ratio applies to images were all significant features are
present. Misclassification is due to a bad response to the
crucial feature detectors. Furthermore, similarities in the
shape and structure of the ants may increase their probabil-
ity to become misclassified. In that case more distinct char-
acteristics, such as the antennae of an ant, may be added to
increase significance of the structural description.

5. SUMMARY AND OUTLOOK

Our approach is to split up the complex shape into an ar-
rangement of subshapes and spatial relationships. Using
expectation maps concurrent shape searches can influence
each other forming an autonomous structural search. The al-
gorithm returns multiple interpretations of the image along
with a confidence measure that can be used for subsequent
classification.

In future, we will explore the potential of using the con-
trol element of the model for learning model parameters

from examples as well as from user input. The model will
be used to experiment with high level semantic information
in a Content Based Image Retrieval system.
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