Multiple View Methods

Cmpt 767 - Visualization

Steven Bergner

sbergner@sfu.ca

[based on slides by Munzner / Möller]

Overview

- Combining views
- Partitioning
- Coordinating Multiple Side-by-Side Views
 - Encoding Channels Shared
 - Data Shared
 - Navigation Synchronized
 - Views Linked With Marks
 - Combinations
- Superimposing Layers
 - Static Layers
 - Dynamic Layers

Readings

- Munzner, "Visualization Analysis and Design":
 - Chapter 12 (Facet: Multiple Views)

Combining views

- often information too complex for a single view
- show multiple views side by side
- Eyes Over Memory: two simultaneous views have lower cognitive load than remembering previous view
- real-estate trade-off: popup view vs. static side-by-side
- OR single view that is changed through interaction (filtering, aggregation, navigation)

Partitioning

Partitioning — Multiple keys

- e.g. 2 keys
 - use two perpendicular axis OR
 - use alignment on one axis
 - separate by A first and then by B (left)
 - separate by B first and then by A (right)
- also known as dimensional stacking

Partitioning — Multiple keys

- we have a choice of order of stacking
- typically should be based on some order
- example: main-effects order by Trellis

 we'll get back to this when we talk about "partition" :) The Visual Design and Control of Trellis Display. Becker, Cleveland, and Shyu. JCSG 5:123-155

Barley Yield (bushels/acre)

Barley Yield (bushels/acre)

Trellis structure

- conditioning/trellising: choose structure
 - pick how to subdivide into panels
 - pick x/y axes for indiv panels
 - explore space with different choices
 - multiple conditioning
- ordering
 - large-scale: between panels
 - small-scale: within panels
 - main-effects: sort by group median
 - derived space, from categorical to ordered

confirming hypothesis

- dataset error with Morris switched?
- old trellis: yield against variety given year/site
- new trellis: yield against site and year given variety
 - exploration suggested by previous main-effects ordering

Partitioning by value attributes

- looses uniqueness
- pick one, now we have a bunch of data items belonging to it
- creates partitioning of data
- hierarchical partitioning —> dimensional stacking
- if done on multiple values at once: clustering / labeling of data items

HiVE

- London property transactions
 - first split into subsets by house type (left)
 - first split by neighborhood (right)

HiVE: conditioning

- reconfigure conditioning hierarchies to explore data space
- treemaps as spacefilling rectangular layouts
 - each rectangle is conditioned subset of data
 - nested graphical summaries
 - size, shape, color used to show subset properties
 - ordered by conditioning variable
- dimensional stacking:
 - discretization and recursive embedding of dimensions

HiVE Example: London Property

- top split: house type. next: neighborhood. next: time
- color: price variance. size: number of sales
- resulting patterns:
 - between neighborhood
 have different house
 distribution
 - within neighborhoods
 have similar prices

HiVE Example: London Property

- top split: neighborhood. next: house type. next: sale time (year). next: sale time (month)
- color: average price. size: fixed
- resulting patterns:
 - expensive
 neighborhoods near
 center

Flat Ter Harrow Semi Det	Flat Ter Barnet Semi Stre	Flat Ter Enfield Semi Det	Flat Ter Haringer	Flat Ter Waltham Forest Serni Det	Flat Ter Redbridge Semi Det	Flat Ter Havering Semi Det
Flat Ter Hillingdon Semi Det	Flat Ter Brent Sem Det	Flat P	Flat	Flat Ter Hackney, Sent Det	Flat Ter Newham Semi [®] Det	Flat Ter Barking Semi Del
Flat Ter Hounslow Sem Der	Flat Ter Ealing	Flat Top		Flat To Islingtoo	Flat Ter Tower Hamlets Semi Cler	Flat Ter Greenwich Semi Der
Flat Ter Richmond	Flat Ter Kingston Semi Dea	Flat Ter Mecter Sem	Flat Ter Wandsmith	Flat Ter Oty of Lendon Semi Det	Flat Ter Southwark Semular	Flat Ter Bexley Semi Det
	Flat Ter	Flat Ter	Flat Ter	Flat Ter	Flat Ter Bromley	

Overview

- Combining views
- Partitioning
- Coordinating Multiple Side-by-Side Views
 - Encoding Channels Shared
 - Data Shared
 - Navigation Synchronized
 - Views Linked With Marks
 - Combinations
- Superimposing Layers
 - Static Layers
 - Dynamic Layers

Multiple side-by-side views

- visual encoding, data, subsets
- navigation synchronized
- linked by explicit marks

Multiform: Linked views / highlighting

- also known as brushing
- shared encoding

EDV

- Exploratory Data Visualizer
- Graham J. Wills. Visual Exploration of Large Structured Datasets. In New Techniques and Trends in Statistics, 237-246. IOS Press, 1995.

Highlighting (Focusing)

• Focus user attention on a subset of the data within one graph (from Wills 95)

Link different types of graphs: Scatterplots and histograms and bars (from Wills 95)

Baseball data: Scatterplots and histograms and bars (from Wills 95)

Linking types of assist behavior to position played (from Wills 95)

Shared data

- three possibilities:
 - both views could each show all of the data (shared-data)
 - one could show a subset of what is in the other (overview-detail)
 - or they could show different partitions of the dataset into disjoint pieces (small-multiple)

Overview-and-detail

- Example: tooltip's -- show details about a data item on demand (*detail-on-demand*)
- Example: Geographic birdseye

© Munzner/Möller

Overview-and-detail

• fisheye lens technique

Small multiple

- shared encoding, different partition
- views have a common reference frame
- facilitates comparison
- often used as a better alternative to animation
- drawback -- screen real-estate

Example: Cerebral

Barsky et al. Cerebral: Visualizing Multiple Experimental Conditions on a Graph with Biological Context. Proc. InfoVis 2008.

© Munzner/Möller

Space vs. Time: Showing Change

- animation: show time using temporal change
 - good: show process
 - good: compare by flipping between two things
 - bad: compare between many things
 - interference from intermediate frames

Space vs. Time: Showing Change

- small multiples: show time using space
 - overview: show each time step in array
 - compare: side-by-side easier than temporal
 - external cognition instead of internal memory
 - general technique, not just for temporal changes

© Munzner/Möller

Space vs. Time: Showing Change

- small multiples: show time using space
 - also can be good for showing process

Animation vs. Small Multiplies

- Tversky argument: intuition that animation helps is wrong
 - meta-review of previous studies
 - often more info shown in animation view so not a fair comparison
 - carefully chosen segmentation into small multiples better than animation if equivalent information shown

[Animation: Can It Facilitate? Barbara Tversky, Julie Morrison, Mireille Betrancourt. International Journal of Human Computer Studies 57:4, pp 247-262, 2002.]

Navigation synchronized

Musie Mood A User Interface For Playlist Generation With Custom Similarity Metric

Views linked by marks

Waldner et al., "Visual Links across Applications", Graphics Interface 2010 © Munzner/Möller

Views linked by marks

Waldner et al., "Visual Links across Applications", Graphics Interface 2010 © Munzner/Möller

Combined Views -- Improvise

Weaver. "Building Highly-Coordinated Visualizations In Improvise". InfoVis 2004, Examples: <u>http://www.cs.ou.edu/~weaver/improvise/examples.html</u> © Munzner/Möller

Overview

- Combining views
- Partitioning
- Coordinating Multiple Side-by-Side Views
 - Encoding Channels Shared
 - Data Shared
 - Navigation Synchronized
 - Views Linked With Marks
 - Combinations
- Superimposing Layers
 - Static Layers
 - Dynamic Layers

Visual layering

- beyond simple use of visual channels
- method variants
 - global compositing: everything superimposed
 - item-level stacking
- major consideration
 - static layers: disjoint ranges in channels safest
 - dynamic/interactive layers: more freedom

Static layers

Static layers

Hierarchical edge bundles

Dynamic layers

