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Overview — Text Vis

e Language Model Vis
 Words as nominal data
e Text Processing Pipeline
e Bag of Words Model

e Keyword Weighting



Reading / Sources

o Jeffrey Heer’s CSE512 — Data Visualization — Wk 7
* Notes from Directed Reading with Mayank Vaccher

e Chapter 10 + 11: Info Vis for Search Interfaces and
Text Analysis, in Search User Interfaces.
Marti Hearst. 2009



https://courses.cs.washington.edu/courses/cse512/18sp/
http://searchuserinterfaces.com/book/sui_ch10_visualization.html

Why visualize text?

e Understanding

e Get “gist” of document
e Grouping

e Cluster for overview or classification
* Comparison

e Compare document collections
e Show evolution over time

e Correlation
e Compare patterns in text to those in other data



Language Model Vis

Many Text Visualizations represent the language
model learnt and not the text itself

* How well does visualization represent properties of
the model?

 Does the model enable reasoning about the text?



Word Clouds
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[Hearst 2009, Fig. 11.10]


http://searchuserinterfaces.com/book/sui_ch11_text_analysis_visualization.html

Tag Clouds based on Word Count

Strength

e Can help with gisting and initial query formation
Weakness

e Sub-optimal visual encoding

* Inaccurate size encoding

* May not facilitate comparison

 Term frequency may not be meaningful

* Does not show text structure



Word Tree based on Word
Sequences

[Wattenberg, Viegas 2008] http://hint.fm/projects/wordtree/ [D3 collapsible trees]


https://beta.observablehq.com/@mbostock/collapsible-tree
http://hint.fm/projects/wordtree/

Challenges of text vis

* High Dimensionality
e Use text to represent text, if possible

e Context and Semantics
e Show context to aid understanding
* Provide access to source text

 Modeling Abstraction
e Determine analysis task
 Understand language model abstraction
e Match analysis task with appropriate models and tools



Words as nominal data

Have meanings and relations

e Correlations: Hong Kong, Bay Area

e Order: April, May, June, ...

e Membership: Tennis, Running, S wimming, Piano
e Hierarchy, antonyms and synonyms, entities, ...



Text data sets

e Dense layout of
sequential, categorical
data

 Grouped: character,
word, sentence, ...

 Example: source code

* Quantitative derived

variables Dense overview of source code with lines color
coded by execution status of software test suite

e Test coverage (brightness)
e Test pass rate (hue)

[Tarantula, Jones et al. 02, Figure 4].



Text Processing Pipeline

e Tokenization
e Remove stop words
e Numbers and symbols (like hashtags)
e Entities (like British Columbia)

e Stemming to group different forms of a word

* Porter Stemmer
* visualizations, visualize, visually -> visual

e Llemmatization
* goes, went, gone -> go

e Ordered list of terms



Bag of Words Model

e Document -> vector of term weights

e Aggregate into a document-term matrix
* In xyz document, abc term occurred N times
e N can be any type of relevance weight

o Zipf-plot

rank proportional to 1/N
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http://www-stat.wharton.upenn.edu/%7Estine/mich/blalock/2_lsa.nb.html
https://books.google.com/ngrams/

Keyword Weighting

 Term Frequency (TF)
e Count of term T in document
e Can take log(TF+1) or normalize

* TF-IDF = log TF x log(#docs / #docs containing T)

e Term Commonness

 normalized TF
relative to most frequent n-gram i.e. the word “the”

* G2 probability of different word frequency



Limitations of Frequency Stats

e Typically focused on unigrams

e Often favors frequent or rare terms only
 May not provide best description

* BoW ignores information
e Grammar / Part-of-speech
e Position within document
 Named Entity Recognition



Further text vis tasks

» Categorization

* Phrase Nets
 Node Grouping

e Comparison, Trends
e Parallel Tag Clouds: linguistic differences faceted over time
e Theme River - Stacked area charts of word count sequence

e Similarity & Clustering

e Vector distances among docs, use to cluster
e Topic Modeling using LSA and LDA
e Text is mixture of topics
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[Van Ham, Wattenberg, Viegas 2009] http://hint.fm/papers/phrase-net-rev5.pdf


http://hint.fm/papers/phrase-net-rev5.pdf

Phrase Nets — Edge Compression
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Thanks for your attention!
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