
Vector Data

Cmpt 767 Visualization

Steven Bergner
sbergner@sfu.ca

[based on slides by A. C. Telea]

Dataset

The Visualization Pipeline - Recall

Process Dataset Process Dataset DatasetProcess Process Dataset

data
formatting

data
filtering

data
mapping

3D to 2D
rendering

[A.C Telea: Data Visualization, Principles and Practice, 2nd edition, CRC Press, 2014]

http://www.crcpress.com/product/isbn/9781466585263

Vector algorithms (Telea, Ch. 6)

1. Scalar derived quantities
• divergence, curl, vorticity

2. 0-dimensional shapes
• hedgehogs and glyphs
• color coding

3. 1-dimensional and 2-dimensional shapes
• displacement plots
• stream objects

4. Image-based algorithms
• image-based flow visualization in 2D, curved surfaces, and 3D

Basic problem

Input data
•vector field v : D → Rn

•domain D 2D planar surfaces, 2D surfaces embedded in 3D, 3D volumes
•variables n=2 (fields tangent to 2D surfaces) or n=3 (volumetric fields)

Challenge: comparison with scalar visualization

vx,vy

vx,vy

Scalar visualization
• challenge is to map D to 2D screen
• after that, we have 1 pixel per scalar value

Vector visualization
• challenge is to map D to 2D screen
• after that, we have 1 pixel for 2 or 3 scalar values!

First solution: Reuse scalar visualization

•compute derived scalar quantities from vector fields
•use known scalar visualization methods for these

1.Divergence

•think of vector field as encoding a fluid flow
•intuition: amount of mass (air, water) created, or absorbed, at a point in D
•given a field v : R3 → R3, div v : R3 → R is

equivalent to

source
div v>0

sink
div v<0

laminar flow
div v=0

div v is sometimes denoted as

Divergence

•compute using definition with partial derivatives
•visualize using e.g. color mapping

•gives a good impression of where the flow ‘enters’ and ‘exits’ some domain

source

sink

Curl

2. Curl (also called rotor)
•consider again a vector field as encoding a fluid flow
•intuition: how quickly the flow ‘rotates’ around each point?
•given a field v : R3 → R3, rot v : R3 → R3 is

•rot v is locally perpendicular to plane of rotation of v
•its magnitude: ‘tightness’ of rotation – also called vorticity

equivalent to

laminar flow
rot v=0

rotational flow
||rot v||>0

rot v

local rotation
plane of v

v

rot v is sometimes denoted as

Curl

• compute using definition with partial derivatives
• visualize magnitude ||rot v|| using e.g. color mapping

• very useful in practice to find vortices = regions of high vorticity
• these are highly important in flow simulations (aerodynamics, hydrodynamics)

vortex 1

vortex 2

Curl
Example of vorticity
•2D fluid flow
•simulated by solving Navier-Stokes equations
•visualized using vorticity

Observations
•vortices appear at different scales
•see the ‘pairing’ of vortices spinning in opposite directions
•what happens with the flow close to the boundary? Why

Compute yourself 2D fluid flows in real-time:
A Simple Fluid Solver based on the FFT, J. Stam, J. of Graphics Tools 6(2), 2001, 43-52

Vector field decomposition

Helmholtz-Hodge theorem

• any vector field v can be uniquely decomposed into three components

d, r, h are computed from two intermediate potential fields ϕ , Ψ

For full details, see the paper below

divergence-free
component r

curl-free
component d

divergence-free
and curl-free
component h

F. Petronetto, A. Paiva, M. Lage, G. Tavares, H. Lopes, H. Lewiner, Meshless Helmholtz-Hodge decomposition, IEEE TVCG, 2008

curl-free since
divergence-free since

Vector field decomposition

input field v = curl-free component d + divergence-free component r

color: vector field magnitude ||v|| color: divergence div d color: vorticity ||rot r||

color: vector field magnitude ||v|| color: magnitude ||d|| color: magnitude ||r||

Vector glyphs
Icons, or signs, for visualizing vector fields
•placed by (sub)sampling the dataset domain
•attributes (scale, color, orientation) map vector data at sample points

Simplest glyph: Line segment (hedgehog plots)
•for every sample point x ∈ D

• draw line (x, x + kv(x))
• optionally color map ||v|| onto it

MHD simulation
2562 grid

1282 glyph grid 642 glyph grid

Vector glyphs

MHD simulation
2562 grid

322 glyph grid 322 glyph grid, no line scaling

Observations
•trade-offs

• more samples: more data points depicted, but more potential clutter
• less samples: less data points depicted, but higher clarity
• more line scaling: easier to see high-speed areas, but more clutter
• less line scaling: less clutter, but harder to perceive directions

Can you observe other pro’s and con’s of line glyphs?

Vector glyphs

MHD simulation
2562 grid

Variants
•cones, arrows, …

• show orientation better than lines
• but take more space to render
• shading: good visual cue to separate (overlapping) glyphs

Can you observe other pro’s and con’s of cone or arrow glyphs?

3D cone glyphs 3D arrow glyphs

Vector glyphs

samples on a rotated grid random samples, quasi-uniform density

How to choose sample points
•avoid uniform grids! (why? See sampling theory, ‘beating artifacts’)
•random sampling: generally OK

What false impressions does the left plot convey w.r.t. the right plot?

3D vector glyphs

• same idea/technique as 2D vector glyphs
• 3D additional problems

• more data, same screen space
• occlusion
• perspective foreshortening
• viewpoint selection

128x85x42 volume field
456960 data points

100K subsamples 10K subsamples

3D vector glyphs

Alpha blending
• extremely simple and powerful tool
• reduce perceived occlusion

• low-speed zones: highly transparent
• high-speed zones: opaque and highly coherent (why?)

128x85x42 volume field
456960 data points

100K subsamples 10K subsamples100K subsamples α=0.1 100K subsamples α=0.1
no color mapping

Glyph problem revisited

Recall the ‘inverse mapping’ proposal
•we render something…
•…so we can visually map it to some data/phenomenon

Glyph problems
•no interpolation in glyph space (unlike for scalar plots with color mapping!)
•a glyph takes more space than a pixel
•we (humans) aren’t good at visually interpolating arrows…
•scalar plots are dense; glyph plots are sparse

• this is why glyph positioning (sampling) is extra important

scalar plot
interpolation

s1 s2

s3 s4

v1 v2

v3 v4

Vector glyphs on 3D surfaces

Trade-off between vector glyphs in 2D planes and in full 3D
•find interesting surface

• e.g. isosurface of flow velocity
•plot 3D vector glyphs on it
•in our example, we don’t use color-mapping of velocity (why?)

Observations
•glyphs near-tangent to our surface (why?)

Pushing vector glyphs to the limit

Average velocity (arrow) and velocity distribution (ellipsoids) for fluid regions with
high reaction speed (voxel selection)
•3*3+3*3+3+1 values per glyph
•nice try, but glyphs are very large → few sample points

Vector color coding

Reduce vector data to scalar data (using HSV color model)
•direction = hue
•magnitude = luminance (optional)
•no occlusion/interpolation problems…
•…but images are highly abstract (recall: we don’t naturally see directions)

direction
color wheel

magnitude=luminance constant luminance (direction coding only)

Vector color coding

color = angle between vector field
and normal of some given surface

See if vectors are tangent to some given surface
• color-code angle between vector and surface normal
• easily spot

• tangent regions (flow stays on surface, green)
• inflow regions (flow enters surface, red)
• outflow regions (flow exits surface, blue)

Displacement plots (also called warp plots)

Show motion of a ‘probe’ surface in the field
•define probe surface S ⊆ D
•create displaced surface

two displacement surfaces
orthogonal to x axis

two displacement surfaces
orthogonal to y axis

• analogy: think of a flexible sheet bent into the wind
• color can map additional scalar
• robust extension:

• removes tangential displacements

Displacement plots

we can displace any kind of surface

Added value
•see what a specific shape becomes like when warped in the vector field

Limitations
•cannot use too high displacement factors ∆t
•self-intersections can occur
•we must choose an initial surface to warp (‘seeding problem’)

Stream objects

Main idea
•think of the vector field v : D as a flow field
•choose some ‘seed’ points s ∈ D
•move the seed points s in v
•show the trajectories

Stream lines
•assume that v is not changing in time (stationary field)
•for each seed po ∈ D

• the streamline S seeded at po is given by

•if v is time dependent v=v(t), streamlines are called particle traces

integrate po in vector field v for time T

Stream objects

Practical construction
•numerically integrate

•discretizing time yields

•recall our discussion on interpolation and basis functions
•Euler integration explained

• we consider v constant between two sample points pi and pi+1
• we compute v(p) by linear interpolation within the cell containing p
• variant: use v(p)/||v(p)|| instead of v(p) in integral (why better?)
• S will be a polyline, S = {pi}

•stop when τ=T or v(p)=0 or p ∉ D
• what does τ=T mean when we use v(p)/||v(p)|| ?

(simple Euler integration)

Details: See book, Listing 6.1

Stream objects

Why is this better than vector glyphs?

• hint: do we have more or less intersections than for hedgehog plots? Why?
• hint: is the image more continuous? Why?

streamlines: seeds from regular grid; use un-normalized v for integration; color by ||v||

Good stream objects design
Coverage
• each dataset point should be close to a stream object
• why?

• because we need to easily do the inverse mapping at any dataset point

Uniformity
• stream object density should be quasi-uniform
• why?

• because we want to avoid high-clutter areas and no-information areas

Continuity
• long stream objects preferable to short ones
• why?

• because we can easier follow few, long, objects than many short ones

Note:
•all above can be seen as an optimization process on the seeds and integration tim
•however, efficient and robust solutions of this optimizations are generally hard

Details: See book, p. 184-185

Stream tubes
Like stream objects, but 3D
• compute 1D stream objects (e.g. streamlines)
• sweep (circular) cross-section along these
• visualize result with shading

• in 2D they are a nicer option than hedgehog/glyph plots

stream tubes, forward integration stream tubes, backward integration

Stream tubes
Variations
• modulate tube thickness by

• data (we’ll see this later in Module 5 – hyperstreamlines)
• integration time – we obtain nice tapered arrows

stream tubes – radius and opacity decrease with integration time

Stream lines in 3D
Tough problem
• more lines, so increased occlusion/clutter

undersampling 10x10x10, opacity=1
• not too much occlusion
• but little insight in the flow field

undersampling 3x3x3, opacity=1
• more local insight (better coverage)
• but too much occlusion

Stream lines in 3D
Variations
• play with opacity, seeding density, integration time

undersampling 3x3x3, opacity=0.1
• less occlusion (see through)
• good coverage

undersampling 3x3x3, shorter time
• more local insight (better coverage)
• even less occlusion
• but less continuity

Stream tubes in 3D

• even higher occlusion problem than for 3D streamlines
• must reduce number of seeds

stream tubes traced from inlet to outlet
• show where incoming flow arrives at
• color by flow velocity
• shade for extra occlusion cues

Stream ribbons

• visualize how the vector field ‘twists’ around itself as it advances in space
• visualizes the so-called helicity of a vector field

Algorithm
•define pairs of close seeds (pa, pb)
•trace streamlines Sa, Sb from (pa, pb)
•construct strip surface connecting closest points on Sa, Sb

stream ribbons: two thick ribbons stream ribbons: 20 thin ribbons

Image-based vector field visualization

So far
• we had discrete visualizations (glyphs, streamlines, stream ribbons, warp plots)
Now
• we want a dense, pixel-filling, continuous, vector field visualization
Principle

• take each pixel p of the screen image
• trace a streamline from p upstream and downstream (as usual)
• blend all streamlines, pixel-wise

• multiplied by a random-grayscale value at p
• with opacity decreasing (exponentially) on distance-along-streamline from p

• identical to blurring (convolving) noise along the streamlines of v

gray value at pixel p
N = noise texture

Image-based vector field visualization

noise texture line integral convolution (LIC)

Line integral convolution
• highly coherent images along streamlines (why? because of v-oriented blurring)
• highly contrasting images across streamlines (why? because of random noise)
• easy to interpret images

Image-based animated flow visualization

Main idea
•extend LIC with animation
•dynamics help seeing orientation and speed (not shown by LIC)

Algorithm

•consider a time-and-space dependent property (e.g. gray value)
•advect I in time over D

•…and also inject some noise at each point of D

advected term injected noise term

balance between advection
and noise injection

Image-based animated flow visualization

Animation
• now, make N(x,t) a

• periodic signal in time
• but spatially random signal

this is the purely spatial random noise like in LIC:

N(x)

is a time-periodic function with period 1

Think of
• N as the phase of the noise
• f as the time-period of the noise

Image-based flow visualization (IBFV)

IBFV, velocity color-coded IBFV, with user-placed colored ink seeds
and luminance-coded velocity magnitude

Implementation
•sounds complex, but it’s really easy (200 LOC C with OpenGL, see Listing 6.2)

• see next slide for details
•real-time (hundreds of frames per second) even for modest graphics cards
•naturally handles time-dependent vector fields

Image-based flow visualization (IBFV)
Implementation

•define grid on 2D flow domain D
•warp grid D along v into Dwarp
•forever

• read current frame buffer into I
• draw Dwarp textured with I (advection) with opacity 1-α
• blend noise texture N’ atop of I (injection) with opacity α

Image-based flow visualization (IBFV)
Variants on 3D curved surfaces and 3D volumes

Curved surfaces
•basically same as in planar 2D, just some implementation details different

3D volumes
•must do something to ‘see through’ the volume
•use an ‘opacity noise’ (similarly injected as grayvalue noise)
•effect: similar to snowflakes drifting in wind on a black background

IBFV on curved surfaces IBFV in 3D volumes

Details: See book, p. 203-204

Advanced vector field visualization
Decomposition

• find areas in dataset domain D having similar-direction vectors v
• visualize these areas as compact regions

• thus, easily identify same-flow areas

Algorithms
• cluster dataset points bottom-up based on vector field direction similarity
• same idea as for image segmentation, but using vector rather than color data

similar-flow regions
on Earth surface

one streamline per
similar-flow region

similar-flow regions in 3D
(laminar flow bouncing against a ball)

Details: See book, Sec. 6.7.2

Advanced vector field visualization
Multiscale IBFV

• apply IBFV, but use vector-field-aligned noise patterns on multiple scales
• build such patterns upfront by vector field decomposition (see prev. slide)

Results
• like IBFV, but user can choose scale (coarseness) of patterns
• shows animated flow in a simplified way

Details: See book, Sec. 6.7.2

Summary
Vector field visualization (book Chapter 6)

• fundamentally harder than scalar visualization
• interpolation problem
• 3D occlusion problem
• seed placement problems

• methods
• reduce vectors to scalars (divergence, gradient, vorticity, direction coding)
• vector glyphs
• displacement plots
• stream objects (streamlines, stream ribbons)
• image-based methods (LIC, IBFV)

Next module: Tensor visualization

	Slide Number 1
	The Visualization Pipeline - Recall
	Vector algorithms (Telea, Ch. 6)
	Basic problem
	First solution: Reuse scalar visualization
	Divergence
	Curl
	Curl
	Curl
	Vector field decomposition
	Vector field decomposition
	Vector glyphs
	Vector glyphs
	Vector glyphs
	Vector glyphs
	3D vector glyphs
	3D vector glyphs
	Glyph problem revisited
	Vector glyphs on 3D surfaces
	Pushing vector glyphs to the limit
	Vector color coding
	Vector color coding
	Displacement plots (also called warp plots)
	Displacement plots
	Stream objects
	Stream objects
	Stream objects
	Good stream objects design
	Stream tubes
	Stream tubes
	Stream lines in 3D
	Stream lines in 3D
	Stream tubes in 3D
	Stream ribbons
	Image-based vector field visualization
	Image-based vector field visualization
	Image-based animated flow visualization
	Image-based animated flow visualization
	Image-based flow visualization (IBFV)
	Image-based flow visualization (IBFV)
	Image-based flow visualization (IBFV)
	Advanced vector field visualization
	Advanced vector field visualization
	Summary

