
Data Representation

Cmpt 767 Visualization

Steven Bergner
sbergner@sfu.ca

[based on slides by A. C. Telea]

Dataset

The Visualization Pipeline - Recall

Process Dataset Process Dataset DatasetProcess Process Dataset

any kind
of data

formatted
data

filtered
data

spatial
data

2D
image

[A.C Telea: Data Visualization, Principles and Practice, 2nd edition, CRC Press, 2014]

http://www.crcpress.com/product/isbn/9781466585263

Dataset

The Visualization Pipeline - Recall

Input Dataset Filtering Dataset DatasetMapping Rendering Dataset

any kind
of data

formatted
data

filtered
data

spatial
data

2D
image

1. Input data
• your primary “raw” source of information
• can be anything (measurements, simulations, databases, …)

2. Formatted data
• converted to points, cells, attributes (discussed next in this module)
• Ready to use for visualization algorithms

3. Filtered data
• eliminates the unneeded data, adds the needed information
• read and written by visualization algorithms

4. Spatial (mapped) data
• has spatial embedding → can be drawn

5. 2D Image
• final image you look at to get your answers

Scientific Visualization – The Dataset

Dataset

• key notion in visualization (SciVis, InfoVis, SoftVis)
• captures all relevant characteristics of a data collection

• structure
• data values
• data operations

Dataset

Structure Attributes

Points Cells Scalar Vector Tenso
r

Operations

Reconstruction ……

f : Rm → Rn f : Rm → Rn f : Rm → Rn

f : R2 → Rn

f : R3 → Rn
f : Rm → R f : Rm → R3 f : Rm → R6..9 • piecewise constant

• piecewise linear

f : Rm → Rn

m-dimensional n-variate

We’ll detail all these next

Visualization data properties

Sampling
(data importing) Reconstruction

Sampling Reconstruction

Continuous data Measurements (samples)
at discrete set of points

Continuous data, as close as possible to input

Continuous data

Cauchy definition of continuity

A function f is continuous iff

C -1 discontinuous (graph of function has “holes”)
C 0 first-order continuous (graph of function has “kinks”)
C k first k derivatives of the function are continuous

Sampled data

Functional properties

• finite
• captures continuous signal at a finite set of points (measurements)

• accurate
• can reconstruct a signal close to input accurately
• reconstruction guarantees continuity properties

Non-functional properties

• efficient
• reconstruction is fast

• compact
• store Gbytes of sample points compactly

• generic
• few data structures cover most dataset types

• simple
• learn to create & use such data structures quickly

Interpolation

Fundamental tool for signal reconstruction

1. Reconstruction formula

are basis (or interpolation) functions

2. Interpolation: reconstruction passes through (interpolates) the sampled values

3. Orthogonality of basis functions

4. Normality of basis functions

because

why? Just apply (2) to

why? (sum (3) over)

and apply above to all

Practical interpolation: Cells

Recall the interpolation formula

This becomes very inefficient if
•N is very large and we have to evaluate φi at all these N points
φi have complicated expressions

Practical basis functions

•are non-zero over small spatial ‘pieces’ of D only (limited support)
•have the same simple formula at all sample points pi

We will discretize our spatial domain D into cells

Cells: 1D space

Consider a simple 1D function f : R → R

1.Sample the 1D axis at some points pi
2.Define cells ci=(pi, pi+1)
3.Consider the reference basis functions for a reference cell (0,1)

φ0,1 : [0,1] → [0,1], φ0(r)=1−r, φ1(r)=r
4.Define a linear transformation Ti from the reference to actual cell ci

1.For ci, define the actual basis functions Φ0,1 using φ0,1 and Ti
-1

and rewrite the final interpolation

2.Apply (5) to interpolate all points in ci using only samples at vertices pi, pi+1 of ci
3.Repeat from 4 for next cell ci+1

Note: see Sec. 3.4 for expressions for all T-1

Cells: 1D example (cont’d)

Remarks
•interpolation & reconstruction goes cell-by-cell
•only need sample points at a cell vertices to interpolate over that cell
•reconstruction is C 1 because φi are C 1 and interpolation formula is are C ∞

2D cells: Quads

Same as in 1D case, but
•we have to decide on different cells; say we take quads
•quads → 4 vertices, 4 basis functions
•particular case: square cells = pixels

Bilinear basis functions Bilinear transforms

See book, p 47-50

2D cells: Quads
Bilinear interpolation

• 4 functions, one per vertex
• result: C 0 but never C 1 (why?)
• good for vertex-based samples

Constant interpolation

• 1 functions per whole cell
• result: not even C 0

• good for cell-based samples

Intermezzo

Flat shading Gouraud shading

What is the difference between flat and Gouraud (smooth) shading?

• surface: bilinear interpolation
• colors: constant interpolation

• surface: bilinear interpolation
• colors: bilinear interpolation

Note: do not confuse Gouraud shading (color interpolation) with
the Phong lighting model (color computation from normals)

2D cells: Quads

Images (color or grayscale)
•use constant basis functions
•cells = pixels
•data (color) is defined at the center of pixels, not corners
•we’ll see why this is important in Module 3

2D cells: Triangles

Remarks
•triangles and quads offers largely same pro’s and con’s
•quad basis functions are not planes (they are bilinear)
•in graphics/visualization, triangles used more often than quads

• easier to cover complex shapes with triangles than quads
• same computational complexity

3D cells: Tetrahedra

Remarks
•counterparts of triangles in 3D
•interpolate volumetric functions f : R3 → R
•three parametric coordinates r, s, t
•trilinear interpolation

3D cells: Hexahedra

Remarks
•counterparts of quads in 3D
•interpolate volumetric functions f : R3 → R
•trilinear interpolation
•particular case: cubic cells or voxels (studied later in Module 7)

Cell types for constant/linear basis functions

0D
•point
1D
•line
2D
•triangle, quad, rectangle
3D
•tetrahedron, parallelepiped,
box, pyramid, prism, …

Quadratic cells

• allow defining quadratic basis functions
• higher precision for interpolation
• however, we need data samples at extra midpoints, not just vertices
• used in more complex numerical simulations (e.g. finite elements)
• split into linear cells for visualization purposes

From cells to grids

Cells
•provide interpolation over a small, simple-shaped�spatial region
Grids
•partition our complex data domain D into cells
•allow applying per-cell interpolation (as described so far)

Given a domain D…

A grid G = {ci} is a set of cells such that

The dimension of the domain D constrains which cell types we can use: see next

no two cells overlap (why? Think about interpolation)

the cells cover all our domain (why? Think about our end goal)

Uniform grids

image volume

• all cells have identical size and type (typically, square or cubic)
• cannot model non-axis-aligned domains

Storage requirements
• m integers for the #cells along each of the m dimensions of D (e.g. m=2 or 3)

Rectilinear grids

• all cells have same type
• cells can have different dimensions but share them along axes
• cannot model non-axis-aligned domains

Storage requirements

floats (coordinates of vertices along each of the m axes of D)

Structured grids

•all cells have same type
•cell vertex coordinates are freely (explicitly) specifiable…
•…as long as cells assemble in a matrix-like structure
•can approximate more complex shapes than rectilinear/uniform grids

Storage requirements

floats (coordinates of all vertices)

Unstructured grids

Consider the domain D: a square with a hole in the middle

We cannot cover such a domain with a structured grid (why?)
•it’s not of genus 0, so cannot be covered with a matrix-like distribution of cells

For this, we need unstructured grids (see next)

Unstructured grids

•different cell types can be mixed (though it’s not usual)
•both vertex coordinates and cell themselves are freely (explicitly) specifiable
•implementation

vertex set
cell set

•most flexible, but most complex/expensive grid type

Storage requirements

for a m-dimensional grid with cells having s vertices each

Recapitulation: Dataset

Dataset

Structure Attributes

Points Cells Scalar Vector Tenso
r

Operations

Reconstruction ……

f : Rm → Rn f : Rm → Rn f : Rm → Rn

f : R2 → Rn

f : R3 → Rn
f : Rm → R f : Rm → R3 f : Rm → R6..9 • piecewise constant

• piecewise linear

f : Rm → Rn

m-dimensional n-variate

• We discussed about these (grids, interpolation, reconstruction)
• We discuss next about attributes

Data attributes

f : Rm → Rn

• n=0 no attributes (we model a shape only e.g. a surface)
• n=1 scalars (e.g. temperature, pressure, curvature, density)
• n=2 2D vectors
• n=3 3D vectors (e.g. velocity, gradients, normals, colors)
• n=6 symmetric tensors (e.g. diffusion, stress/strain – Modules 5..6)
• n=9 assymetric general tensors (not very common)

Remarks

• an attribute is usually specified for all sample points in a dataset (why?)
• different measurements will generate different attributes
• each attribute is interpolated separately
• different visualization methods for each n (see Module 3 next)

Data attributes: Color

• complex topic (measurement, perception, representation)
• we’ll mainly focus on representation and a bit on perception

RGB color system

• three floating-point components in [0,1]
• additive system (add, or mix, components to obtain result)

• perfect for synthesis (e.g. in the graphics card)
• unintuitive for humans, who think easier in hues

slice along plane
orthogonal
to main diagonalcolor cube color hexagon

HSV color system

•three floating-point components in [0,1]

•hue: tint of the color (red, green, blue, yellow, cyan, magenta, yellow, …)
•saturation: strong color (s=1), grayish color (0<s<1) or gray (s=0)
•value: luminance; white (v=1), dark (0<v<1), or black (v=0)

•HSV widgets: typically specify h and s in a 2D canvas and v separately (slider)
•show a ‘surface slice’ in the RGB cube

v=0

v=1

s=0

s=1

h

color wheel
color wheel
stretched onto
a square

RGB-HSV mapping

RGB color

HSV color

• simple conversions
• for details, see Chapter 3, pages 72-74

user

graphics software

Advanced data representation issues

Data resampling

• consider building a Gouraud-shaded surface plot

• how to compute vertex attributes (normals) when we have cell attributes?

Flat shading Gouraud shading

• normals computed per cell • normals required per vertex

??

Data resampling: cell data to vertex data and back

Resampling a signal over some target domain D’ should yield a ‘similar’ signal

•this is the classical area-weighted normal averaging used in Gouraud shading

Resampling vertex data to cell data (same reasoning as above)

•this is the classical averaging of vertex values to compute cell values

see Sec. 3.9.1

Data super/subsampling

• we have data on some grid
• we want data on a ‘similar’ grid having more or less cells
• the interpolation functions stay the same (unlike in resampling)

• this is an advanced topic – treated separately in Module 6

unstructured grid
36000 vertices

unstructured grid
3510 vertices

subsampling

supersampling

Grid-less interpolation

• we have data at some ‘scattered’ point locations in D
• we have no grid (cells connecting points)
• we can

• construct such a grid (triangulation)
• interpolate without a grid (radial basis functions)

• These advanced topics are discussed separately in Module 6

200K scattered
points

interpolated
surface

grid-less
interpolation

Summary
Data Representation (book Chapter 2)

• reconstruct continuous representations of sampled signals
• efficiently
• accurately

• interpolation, grids, and cells

• data attributes (scalars, vectors, tensors)

• advanced issues (resampling, grid-less interpolation)

• read Ch. 2 in detail to understand all the math!

Next module

• visualization algorithms

Happy so far?

	Slide Number 1
	The Visualization Pipeline - Recall
	The Visualization Pipeline - Recall
	Scientific Visualization – The Dataset
	Visualization data properties
	Continuous data
	Sampled data
	Interpolation
	Practical interpolation: Cells
	Cells: 1D space
	Cells: 1D example (cont’d)
	2D cells: Quads
	2D cells: Quads
	Intermezzo
	2D cells: Quads
	2D cells: Triangles
	3D cells: Tetrahedra
	3D cells: Hexahedra
	Cell types for constant/linear basis functions
	Quadratic cells
	From cells to grids
	Uniform grids
	Rectilinear grids
	Structured grids
	Unstructured grids
	Unstructured grids
	Recapitulation: Dataset
	Data attributes
	Data attributes: Color
	HSV color system
	RGB-HSV mapping
	Advanced data representation issues
	Data resampling: cell data to vertex data and back
	Data super/subsampling
	Grid-less interpolation
	Summary

