Marks + Channels

Cmpt 767
 Steven Bergner
 sbergner@sfu.ca

\& Domain situation

Observe target users using existing tools

(目) Data/task abstraction

© Visual encoding/interaction idiom Justify design with respect to alternatives

閪 Algorithm

Measure system time/memory Analyze computational complexity

Analyze results qualitatively
Measure human time with lab experiment (lab study)
Observe target users after deployment (field study)
Measure adoption

Overview

- Effectiveness of mappings
- Mapping to positional quantities
- Mapping to shape
- Mapping to color
- Mapping to texture
- Other mappings
- Glyphs

Overview

- Marks + channels
- Channel effectiveness
- Accuracy
- Discriminability
- Separability
- Popout
- Channel characteristics
- Spatial position
- Colour
- Size
- Tilt (angle)
- Shape (glyph)
- Stipple (texture)
- Curvature
- Motion

Readings

- Munzner, "Visualization Analysis and Design":
- Chapter 5 (Marks and Channels)
- Colin Ware:
- Chapter 4 (Color)
- Chapter 5 (Visual Attention and Information that Pops Out)
- The Visualization Handbook:
- Chapter 1 (Overview of Visualization)
- Additional (background) reading
- J. Mackinlay: Automating the design of graphical presentations of relational information. ACM ToG, 5(2), 110-141, 1986

Marks + Channels

- Mark: basic graphical element / geometric primitive:
- point (0D)
- line (1D)
- area (2D)
- volume (3D)

- Channel: control appearance (of a mark)
- position
- size
- shape
- orientation

- hue, saturation, lightness
- etc.

According to Bertin ...

Marks

Points Lines Areas
LES VARIABLES DE L'IMAGE
Position
Size
Channels
(Grey)Value
Texture
Color
Orientation
Shape

Stolte／Hanrahan

property	marks	ordinal／nominal mapping	quantitative mapping
shape	glyph	$\bigcirc \square+\Delta \mathrm{S}$	
size	rectangle，circle， glyph，text	－ 0	－ 000000000
orientation	rectangle，line，text	$->/ 1 \pm$	ーーーノノ／1／11
color	rectangle，circle，line， glyph，y－bar，x－bar， text，gantt bar		min max

＂Polaris：A System for Query，Analysis and Visualization of Multi－dimensional Relational Databases＂，Chris Stolte and Pat Hanrahan

Visualization Families

Progression

a) Lull b) $L \therefore$ c) $L \therefore$ d $L \cdot$

Channel types: Where / What

higher visual
areas

WHERE

WHAT

What vs. How Much channels

- What: categorical
- shape
- spatial region
- colour (hue)
- How Much: ordered (ordinal, quantitative)
- length (1D)
- area (2D)
- volume (3D)
- tilt
- position
- colour (lightness)

Mark types

- tables: item = point
- network: node+link
- link types:
- connection: relationship btw. two nodes
- containment: hierarchy

Expressiveness + Effectiveness

- expressiveness principle:
- visual encoding should express all of, and only, the information in the dataset attributes
- lie factor
- effectiveness principle:
- importance of the attribute should match the salience of the channel
- data-ink ratio

Effectiveness of Mappings

- Effectiveness according to neurophysiology
- Cells in Visual Areas 1 and 2 differentially tuned to each of the following properties:
- Orientation and size (with luminance)
- Color (two types of signal)
- Stereoscopic depth
- Motion

Effectiveness of Mappings

Channels and Marks：Types and Ranks
ordered：ordinal／Quantitative Categorical How much

what region 吅 color hue ロロロロ ［shape＋okLA stipple pattern Marks as Items／Nodes points ：\because. ． lines areas \＃ Marks as Links $\underset{(\text { area）}}{\text { containment }} \quad \because \cdot 0$ connection （line）

Visual Language is a Sign System

- Image perceived as a set of signs
- Sender encodes information in signs
- Receiver decodes information from signs
- Jacques Bertin
- French cartographer [1918-2010]
- Semiology of Graphics [1967]

- Theoretical principles for visual encodings

Effectiveness of Mappings

- Mapping from (filtered) data to renderable representation
- Most important part of visualization
- Possible visual representations:
- Position
- Size
- Orientation
- Shape
- Brightness
- Color (hue, saturation)

Effectiveness of Mappings

- Efficiency and effectiveness depends on input data:
- Nominal
- Ordinal
- Quantitative
- Good visual design
- Based on psychology and psychophysics
- Psychological investigations to evaluate the appropriateness of mapping approaches

Bertin's Retinal Variables

	\mathbf{N}	\mathbf{O}	\mathbf{Q}
	Position		
Size	\mathbf{N}	\mathbf{O}	\mathbf{Q}
	\mathbf{N}	\mathbf{O}	\mathbf{Q}
	Value	\mathbf{N}	0
Texture	\mathbf{N}		
Color	\mathbf{N}		
Orientation	\mathbf{N}		

Mapping to Data Types

	Nominal	Ordinal	Quantitative
Position			
Size			
(Grey)Valu			
e			
Texture			
Color			
Orientation			
Shape			$\boldsymbol{V}=$ Gooc

Mapping to Data Types

	Nominal	Ordinal	Quantitative
Position	\boldsymbol{V}	\mathbf{V}	\mathbf{V}
Size	\boldsymbol{V}	\mathbf{V}	\mathbf{V}
(Grey)Valu	\boldsymbol{V}	\mathbf{V}	\sim
e			
Texture	\boldsymbol{V}	\sim	\mathbf{X}
Color	\boldsymbol{V}	\mathbf{X}	\mathbf{X}
Orientation	\boldsymbol{V}	\mathbf{x}	\mathbf{X}
Shape	\boldsymbol{V}	\mathbf{X}	$\mathbf{X} \quad \boldsymbol{V}=$ Gooc

Mackinlay's Retinal Variables

[Mackinlay, Automating the Design of Graphical Presentations of Relational Information, ACM TOG 5:2, 1986]

Effectiveness -- Accuracy

- perceptual judgement vs. stimulus
- Weber's law:
$S=I^{n}$

Effectiveness -- Discriminability

- how many colours can I tell apart?
- how many levels of grey etc.
- Ex: line width

Effectiveness -- Separability

- separable vs. integral channels

position hue (color)
fully separable

size

size: width
size: height
some/significant interference

major interference

According to Ware ...

More integral coding pairs

- Integral display dimensions
- Two or more attributes perceived holistically
- Separable dimensions
- Separate judgments about each graphical dimension
- Simplistic classification, with a large number of exceptions and asymmetries

Popout -

Preattentive processing

- parallel (visual processing)

$$
\begin{array}{|lllll|}
\hline & & \bullet & & \\
\bullet & & & & \\
\bullet & & & & \\
\bullet & & \bullet & \ddots & \\
& \bullet & \bullet & \ddots & \\
\bullet & \ddots & \bullet & \bullet & \bullet \\
\hline
\end{array}
$$

Overview

- Marks + channels
- Channel effectiveness
- Channel characteristics
- Spatial position
- Color
- visual system
- color models
- color deficiency
- Size
- Tilt (angle)
- Shape (glyph)
- Stipple (texture)
- Curvature
- Motion

Channels

- Spatial position: most effective for all data types (remember the power of the plane)
- Size: 'how much', interacts with others
- Shape/Glyph: 'what channel'
- Stipple/texture: less popular today
- Curvature
- Motion: large popout effect

Spatial position

Colour

Visual System

The eye and the retina

Optic Nerve

Retina detectors

- 1 type of monochrome sensor (rods)
- Important at low light
- Next level: lots of specialized cells
- Detect edges, corners, etc.
- Sensitive to contrast
- Weber's law: DL ~ L

Retina detectors

- 3 types of color sensors - S, M, L (cones)
- Works for bright light
- Peak sensitivities located at approx. 430nm, 560nm, and 610nm for "average" observer.
- Roughly equivalent to blue, green, and red sensors

Cone Response

Color-Opponent Cells

Color Opponency

Color Models

RGB Color Space

- Additive system
- Colors that can be represented by computer monitors
- Not perceptually uniform

Perceptual Color Spaces

Courtesy of Maureen Stone

Munsell Color

- Hue, Value, Chroma
- 5 R 5/10 (bright red)
- N 8 (light gray)
- Perceptually uniform

Munsell Renotation System
 maps between HVC and XYZ

Courtesy of Maureen Stone

Munsell Atlas

Interactive Munsell Tool

- From www.munsell.com

Courtesy of Maureen Stone

HSL Color Space

- Hue - what people think of color
- Saturation - purity, distance from grey
- Lightness - from dark to light
- Not perceptually uniform

Lab Color Space

- Perceptually uniform
- L approximates
human perception of lightness
- a, b approximate

R/G and Y/B
channels

- a, b called chroma

Luminance, Saturation, Hue

- Luminance
- How-much channel
- discriminability: ~2-4 bins
- contrast important
- Saturation
- How-much channel
- discriminability: ~3 bins
- Hue
- What channel
- discriminability: ~6-12

Ordered Data

- Luminance
- Saturation
- Brightness

- Rainbow is a learned order!

Thanks to Moritz Wustinger
Smiley based on http://upload.wikimedia.org/wikipedia/commons/b/bd/A Smiley.jpg

Color deficiency

Model "Color blindness"

- Flaw in opponent processing
- Red-green common (deuteranope, protanope)
- Blue-yellow possible (tritanope -- most common)
- Luminance channel almost "normal"
- 8% of all men, 0.5% of all women
- Effect is 2D color vision model
- Flatten color space
- Can be simulated (Brettel et. al.)
- http://colorfilter.wickline.org
- http://www.colblindor.com/coblis-color-blindnesssimulator/

Color Blindness

Protanope
No L cones

Red / green deficiencies

Deuteranope
No M cones

Tritanope
No S cones
Blue / Yellow deficiency

Color-Blindness

Normal

Overview

- Marks + channels
- Channel effectiveness
- Channel characteristics
- Spatial position
- Color
- Other channels:
- Size
- Tilt (angle)
- Shape (glyph)
- Stipple (texture)
- Curvature
- Motion

Channels and Marks：Types and Ranks
ordered：ordinal／Quantitative Categorical How much

what region 吅 color hue ロロロロ ［shape＋okLA stipple pattern Marks as Items／Nodes points ：\because. ． lines areas \＃ Marks as Links $\underset{(\text { area）}}{\text { containment }} \quad \because \cdot 0$ connection （line）

Relative vs. absolute judgement

- Weber's law says that everything is relative, i.e. the "intensity" depends on the background signal

Relativ vs. absolute judgement

- Weber's law says that everything is relative, i.e. the "intensity" depends on the background signal

Relativ vs. absolute judgement

- Weber's law says that everything is relative, i.e. the "intensity" depends on the background signal

http://de.wikipedia.org/wiki/Optische Täuschung

Mapping to Texture

- Main parameters for texture
- Orientation
- Size
- Contrast
- Alternatively
[Tamura 78]:
- Coarseness
- Roughness
- Contrast
- Directionality
- Line-likeness
- Regularity

Mapping to Texture

- Goal:
- Avoid visual "crosstalk"
- "Orthogonal" perceptual channels
- Restricts range of parameters
- E.g. approximately 30 degrees difference in orientation needed to distinguish textures
- Main application for textures: nominal data
- Some applications for direct visualization of orientations

Mapping to Texture

- Generate texture
- Gabor func. as primitives
- Parameters:
- Orientation
- Size
- Contrast
- Randomly splatter down

Gabor functions

- Blending yields continuous coverage
- Stochastic texture model

Mapping to Texture

- Other stochastic texture models:
- LIC (Line integral convolution) for vector field visualization
- Structural models
- Procedural description of texture generation
- E.g. Lindenmayer systems (L-systems)

Other Mappings

- More advanced mappings possible
- Examples for other visual variables
- Motion
- Blink coding
- Explicit use of 3D
- Multiple attributes
- Typical combination of attributes:
- Geometric position, e.g., height field
- Color: saturation, intensity, tone

- Texture
- Issue: Interference?

Glyphs

- Glyphs and icons
- Consist of several components
- Features should be easy to distinguish and combine
- Icons should be separated from each other
- Mainly used for multivariate discrete data

Glyphs

- Interesting graphical attributes for basic glyph design [according to C. Ware, Information

Visual variablaferization]	Dimensionality
Spatial position of glyph	3 dimensions: X, Y, Z
Color of glyph	3 dimensions: defined by color opponent theory
Shape	2-3? dimensions unknown
Orientation	3 dimensions: corresponding to orientation about each of the primary axes
Surface texture	3 dimensions: orientation, size, and contrast
Motion coding	2-3? Dimensions largely unknown, but phase may be useful
Blink coding: The glyph blinks on and off at some rate	1 dimension

Glyphs

- Color icons [Levkowitr 91]

- Subdivision of a basic figure (triangle, square, ...) into edges and faces
- Mapping of data to faces via color tables
- Grouping by emphasizing edges or faces

Glyphs

- Stick-figure icon [Picket \& Grinstein 88]
- 2D figure with 4 limbs
- Coding of data via
- Length
- Thickness
- Angle with vertical axis
- 12 attributes
- Exploits the human capability to recognize patterns/textures

Glyphs

- Stick-figure icon

Glyphs

- Circular icon plots:
- Star plots
- Sun ray plots
- etc...
- Follow a "spoked wheel" format
- Values of variables are represented by distances between the center ("hub") of the icon and its edges

Glyphs

- Star glyphs
[S. E. Fienberg: Graphical methods in statistics. The American Statistician, 33:165-178, 1979]
- A star is composed of equally spaced radii, stemming from the center
- The length of the spike is proportional to the value of the respective attribute
- The first spike/attribute is to the right
- Subsequent spikes are counter-clockwise
- The ends of the rays are connected by a line

Chrysler LeBaron Wgn

