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Reading

• Munzner, “Visualization Analysis and Design”:
– Chapter 2+3 (Why+What+How)

• Shneiderman, “The Eyes Have It: A Task by Data 
Type Taxonomy for Information Visualizations,”
IEEE Symposium on Visual Languages, 1996

• Heer+Shneiderman, “Interactive Dynamics for 
Visual Analysis,” Communications of the ACM 
2012.

• Amar et al., “Low-level components of analytic 
activity in information visualization,” InfoVis 2005.
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http://doi.ieeecomputersociety.org/10.1109/VL.1996.545307
http://dx.doi.org/10.1109/INFVIS.2005.1532136


Data/set types+semantics
Tasks

• What — Data abstraction
– Data types

• categorical, ordinal, quantitative

– Dataset types
• Tables
• Networks/graph (trees)
• Text / logs
• Fields
• Static file vs. dynamic stream

– Attribute + dataset semantics
• Spatial vs. non-spatial
• Temporal vs. non-temporal
• Keys vs. values
• Continuous vs. discrete
• Topology vs. geometry

– Derived attributes / spaces

• Why+How —Task abstraction
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Data types









Semantics vs. type

• Semantics: real-world meaning of data

• Type: abstract classification with 
implications on
– mathematical operations

– data structure (how to store)

• Given semantics -- type will follow
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Basic variable types

• Physical type 
– Characterized by storage format & machine 

ops

– e.g: bool, short, int, float, double, string, … 

• Abstract type
– Provide descriptions of the data

– Characterized by methods / attributes

– May be organized into a hierarchy
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Data types

• categorical (nominal)
apples, oranges, bananas

• ordered
– ordinal

e.g. rankings: small, medium, large

– quantitative
real numbers

– sequential (interval)

– diverging (ratios)
well defined zero point
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Quantitative

• Q - Interval (location of zero arbitrary)
– Dates:  Jan 19;  Location:  (Lat, Long)

– Only differences (i.e., intervals) can be 
compared

• Q - Ratio (zero fixed)
– Measurements: Length, Mass, Temp, ...

– Origin is meaningful, can measure ratios & 
proportions

– Weight A is twice as heavy as weight B

– doesn’t work for dates!
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Hierarchies

• possible for any data type

• sometimes strong implicit hierarchies

• e.g. geography:
– postal code

– city district

– city

– state

– country

– continent
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Example - Time

• has a strong (implicit) hierarchy:
– minute

– hour

– day

– week

– month

• can be seen as ordinal (entries in a diary)
• can be seen as quantitative (timings in a race)
• interval vs. ratio --

time-stamp vs. duration
17



Dataset types



Dataset types

• Tables

• Networks/graph (trees)

• Text / logs

• Fields

• Static file vs. dynamic stream
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Tables

• each data item in a new row

• each column contains an attribute
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Record / Item



Field / 
Dimension /

Attribute



1 = Quantitative
2 = Nominal
3 = Ordinal



1 = Quantitative
2 = Nominal
3 = Ordinal



Relational Data Cubes

“Rolling Up”

“Drilling Down”

Concatenation +
Cross x
Nest /



Pivot Tables



Networks / graphs

• item = node
• link between two items = edge
• e.g. social network: people + friendships

• both links+nodes can have attributes

• graphs can be represented by 2 tables
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Types of graphs

• undirected graph vs. directed graph
– edges do not/do have a direction

• DAG -- directed acyclic graphs

• connected graphs

• planar graphs

• trees -- connected graph with no cycles
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Text + logs

• text document: ordered set of words

• document collection

• bag of words

• log files: designed for machine readability
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Fields

• really continuous dataset

• specified through grids (connectivity)

• often connected to spatial data

32



Files vs. streams

• standard: static files

• challenge today: dynamic streams
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Attribute + dataset 
semantics



Attribute+dataset semantics

• Spatial vs. non-spatial

• Temporal vs. non-temporal

• Keys vs. values

• Continuous vs. discrete

• Spatial vs. abstract

• Timevarying vs. static

• Topology vs. geometry
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Spatial vs. abstract

• implications on visual encoding 
• spatial

– geographic information

– physical simulation

– medical data (MRI, CT scan etc.)

– strong constraints on visual layout

• non-spatial / abstract
– network data

– financial transactions

– up to the visualization expert to choose a visual 
layout 36



Temporal / time-varying vs. 
Non-temporal / static

• time has a strong meaning to us as 
humans

• special consideration for visual encoding

• time has a hierarchy

• time periods/cycles very important

• time-varying: time as quantitative

• time-series: time as ordinal
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Continuous vs. discrete

• data is almost always discrete -- we need 
to store it in discrete memory cells

• it’s really how we think about the data

• categorical is always discrete

• quantitative is continuous

• care must be taken when making 
discrete measurements continuous

38



Data vs. Conceptual Models 
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Data vs. Conceptual Models

• Data Model:  Low-level description of the 
data 
– Set with operations, e.g., floats with +, -, /, *

• Conceptual Model:  Mental construction
– Includes semantics, supports reasoning

Physical Type Conceptual
1D floats temperature
3D vector of floats space
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Example

• From data model...
– 32.5, 54.0, -17.3, … (floats)

• using conceptual model...
– Temperature

• to data type
– Continuous to 4 significant digits (Q) 

– Hot, warm, cold (O) 

– Burned vs. Not burned (N)
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Keys vs. values

• databases: key vs. value

• statistics: independent vs. dependent 
variable or attribute or dimension

• computational science: inputs vs. outputs

• implies a mapping
keys → values

• keys used to look up values in a table

• common keys: space + time
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High-dimensional vs. 
multi-dimensional

• stats: high-dim (keys or values)

• physics: multi-dim (mostly about keys)

• implications:
– multi-dim: two to tens of dimensions

– high-dim: no constraint, can be thousands of 
dimensions
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Multi-variate (about values)

• Number of values per key
– 1: Univariate

– 2: Bivariate

– 3: Trivariate

– >3: Hypervariate / Multi-variate

44



Spatial dimensions (keys)

• 1D: refers to a single ‘length’ scale (e.g. 
height)

• 2D: geographical information

• 3D: medical / physics

• time-varying:
– 1D+time

– 2D+time

– 3D+time
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Spatial values

• Scalar data
– mapping f:Rn→R, (x1,...,xn)→y

– n independent variables (keys) xi (1D, 2D, or 3D, 
+time)

– value y is just univariate

• Example:
– MRI data

– 2D grey-scale image data
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Spatial values

• Vector data
– mapping f:Rn→Rm, (x1,...,xn)→ (y1,...,ym)

– representing direction and magnitude

– usually m=n

– Exceptions, e.g., due to projection

• Example:
– weather map (wind direction)

– flow around airplane wings
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Spatial values

• Tensor data
– mapping f:Rn→Rm, (x1,...,xn)→ yi1,i2,…,ik

– tensor of level k

– a tensor of level 1 is a vector

– a tensor of level 2 is a matrix, …

• Example:
– diffusion-tensor MRI

– stress-tensor, etc.
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Topology vs. geometry

• Topology specifies the structure 
(connectivity) of the data 

• Geometry specifies the position of the 
data
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Topology vs. geometry

• In topology, qualitative questions about 
geometrical structures are the main concern 
– Does it have any holes in it?
– Is it all connected together?
– Can it be separated into parts?

• Underground map does not tell you how far one 
station is from the other, but rather how the lines 
are connected (topological map)
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Topology

• Properties of datasets that remain 
unchanged even under different spatial 
layouts

Same geometry (vertex positions), different topology (connectivity)
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Topological equivalence

• Things that can be transformed into each 
other by stretching and squeezing, 
without tearing or sticking together bits 
which were previously separated 

topologically equivalent
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Grid types

• Grids differ substantially in the cells 
(basic building blocks) they are 
constructed from and in the way the 
topological information is given

scattered          uniform          rectilinear          structured       unstructured
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Curvilinear grids
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Unstructured grids

• Can be adapted to local features
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Unstructured grids

• Can be adapted to local features
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Hybrid grids

• Combination of different grid types
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Data/set types+semantics
Tasks

• Data abstraction
– Data types

– Dataset types

– Attribute + dataset semantics

– Derived attributes / spaces
• Task abstraction

63



Derived attributes

• the norm, not the exception

• necessary for some of the tasks

• simple transformations

• statistical summaries of (lots of) data

• e.g. stagnostics
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Data/set types+semantics
Tasks

• What — Data abstraction
– Data types

• categorical, ordinal, quantitative

– Dataset types
• Tables
• Networks/graph (trees)
• Text / logs
• Fields
• Static file vs. dynamic stream

– Attribute + dataset semantics
• Spatial vs. non-spatial
• Temporal vs. non-temporal
• Keys vs. values
• Continuous vs. discrete
• Topology vs. geometry

– Derived attributes / spaces

• Why+How — Task abstraction 70



Data/set types+semantics
Tasks

• What — Data abstraction

• Why + How — Task abstraction
– Shneiderman’s Mantra

– Heer+Shneiderman: Visual Analysis tasks

– Empirical Study: Amar+Eagan+Stasko

– Taxonomy: Brehmer + Munzner
• Why

– consume / produce
– search
– query

• How
– introduce
– encode
– facet
– reduce 71



Task Abstraction

[Meyer et al., MizBee:  A Multiscale Synteny Browser, 2009]



Shneiderman’s Mantra



© Munzner/Möller

Task Abstraction
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• Overview: Gain an overview of the entire 
collection

• Zoom: Zoom in on items of interest

• Filter: filter out uninteresting items

• Details-on-demand: Select an item or group and 
get details when needed

• Relate: View relationships among items

• History: Keep a history of actions to support 
undo, replay, and progressive refinement

• Extract: Allow extraction of sub-collections and of 
the query parameters

[Shneiderman, 1996]



Shneiderman’s Visual 
Information Seeking Mantra

Overview first,
zoom and filter,

then details-on-demand
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Heer+Shneiderman: 
Visual analysis tasks





Empirical Study: 
Amar+Eagan+Stasko



Task Abstraction

[Amar, Eagan, & Stasko, 2005]
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1)Filter: Find data that satisfies conditions

2)Find Extremum: Find data with extreme 
values

3)Sort: Rank data according to some metric

4)Determine Range: Find span of data values

5)Find Anomalies: Find data with unexpected / 
extreme values

[Amar, Eagan, & Stasko, 2005]
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1)Filter: Find data that satisfies conditions

2)Find Extremum: Find data with extreme 
values

3)Sort: Rank data according to some metric

4)Determine Range: Find span of data values

5)Find Anomalies: Find data with unexpected / 
extreme values

[Amar, Eagan, & Stasko, 2005]
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1)Filter: Find data that satisfies conditions

2)Find Extremum: Find data with extreme 
values

3)Sort: Rank data according to some metric

4)Determine Range: Find span of data values

5)Find Anomalies: Find data with unexpected / 
extreme values

[Amar, Eagan, & Stasko, 2005]
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Task examples from you



Taxonomy: Why?
Brehmer + Munzner



Why (Tasks!)

• Munzner has a hierarchy of
– consume / produce

– search

– query
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Consume vs. produce

• Produce
– help the user produce vis!

• Consume (most common)
• present

– not just static (e.g. interactive graphics in newspapers / 
NY Times)

• discover
– generation / verification of hypothesis

• enjoy
– “casual” vis
– e.g. Name Voyager (http://www.babynamewizard.com/voyager)
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http://www.babynamewizard.com/voyager


Search
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Query

• identify
– refers to a single target

• compare
– refers to two or multiple targets

• summarize
– refers to whole set of targets
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Taxonomy: How?
Brehmer + Munzner



How (what interactions enable 
the tasks)?

• Munzner considers these categories of 
how to manipulate visualizations:
– introduce

– encode

– facet

– reduce
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Introduce

• import
– new data items to be loaded

• derive

• annotate
– with text label etc. (classification)
– acts as a new attribute

• record
– screenshots, bookmarks, parameter settings, logs, 

etc.
– graphical / use history
– analytical provenance!
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Encode

• through channels and marks

• e.g. color, shapes, size, position etc.

• e.g. different visual encodings of a graph:
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Facet

• how to use views:
– partition (side-by-side, simultaneously)

– superimpose (multiple layers)

– change (layout, encoding --> interaction)

– select (demarcation, highlighting)

– coordinate (brushing+linking, linking views)
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Partition
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Linking (coordinate)
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Reduce

• reduce (increase) number of elements 
shown
– filter

– aggregate

– navigate (alter viewpoint, e.g. zooming, 
detail-on-demand)

– embed (focus+context)
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Embed — fisheye lens
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